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Bioinformatics meets Al: transforming big data
into breakthroughs in biotechnology

Abstract

The convergence of bioinformatics and artificial intelligence (AI) is revolutionising the biotechnology land-
scape, transforming biological big data into actionable insights and groundbreaking innovations. Bioinformat-
ics, with its ability to manage and analyse massive datasets from genomics, proteomics, and systems biology,
faces challenges of complexity and scale. AI's advanced techniques — machine learning, deep learning, and

natural language processing-provide unprecedented tools for deciphering patterns, making predictions, and

driving automation. This synergy has catalysed remarkable progress in precision medicine, drug discovery,
gene editing, and synthetic biology, heralding a new era of data-driven breakthroughs. This review explores

the foundations, transformative applications, and recent breakthroughs at the intersection of bioinformatics

and Al while addressing challenges and envisioning a future where interdisciplinary collaboration unlocks

the full potential of this powerful partnership.
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Introduction

Bioinformatics, a dynamic interdisciplinary field, integrates biology, computer science,
and statistics to process and interpret the staggering volumes of data generated by
modern biological research. This data, often derived from next-generation sequenc-
ing, proteomics, metabolomics, and structural biology, holds the potential to unlock
profound insights into life processes (Pereira et al., 2020). However, the complexity,
diversity, and scale of biological big data pose significant challenges in storage, analysis,
and interpretation. Traditional computational tools, while invaluable, are increasingly
inadequate to handle this deluge of information efficiently (Rawat, Yadav, 2021).
Artificial Intelligence (AI) has emerged as a transformative technology capable of
addressing these challenges. AI encompasses a range of computational methods, in-
cluding machine learning (ML), deep learning (DL), and natural language processing
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(NLP), all designed to emulate aspects of human intelligence (Collins et al., 2021). These
methods excel at identifying patterns in data, predicting outcomes, and automating tasks.
In the field of biotechnology, Al has demonstrated remarkable success, from predicting
protein structures with unprecedented accuracy to accelerating drug discovery pipelines
and deciphering genomic variants associated with disease (Larabi-Marie-Sainte et al.,
2019; Jumper et al., 2021).

The intersection of bioinformatics and Al represents a revolutionary paradigm shift.
This convergence leverages Al's computational power to enhance the capabilities of
bioinformatics, addressing critical bottlenecks such as data integration, noise reduction,
and multidimensional analysis. By combining these two disciplines, researchers can
derive actionable insights from complex datasets, enabling advancements in precision
medicine, synthetic biology, and personalised therapeutics (Jamialahmadi et al., 2024).
For instance, Al-enhanced bioinformatics pipelines are instrumental in decoding cancer
genomes, optimising gene-editing tools like CRISPR, and understanding microbiome-

-host interactions (Alm, 2024).

The aim of this review is to explore the transformative potential of combining AT and
bioinformatics in biotechnology. By examining their foundational principles, recent
breakthroughs, and practical applications, this article aims to provide a comprehensive
understanding of how these fields are converging to drive innovation. The review is
structured to first outline the key concepts and technologies underpinning bioinfor-
matics and Al followed by an exploration of their synergistic applications. Additionally,
it highlights recent breakthroughs, discusses technical and ethical challenges, and
offers insights into future directions for research and collaboration. This discussion is
intended not only for researchers and practitioners in computational biology but also
for a broader audience interested in the profound implications of AI-powered bio-
informatics on healthcare, agriculture, and environmental sciences. By illuminating this
vibrant interdisciplinary frontier, this review underscores the immense opportunities
for innovation at the nexus of bioinformatics and AL

Methodology

Search strategy
A systematic literature review was conducted following the PRISMA (Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses) guidelines to ensure meth-
odological transparency and reproducibility. Comprehensive searches were performed
across prominent scientific databases, including PubMed, Google Scholar, Scopus, and
Web of Science. The search spanned publications from January 2019 to February 2025.
The search strategy was meticulously designed to capture the breadth and depth of
the topic. The keywords and Medical Subject Headings (MeSH) terms used included:
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“Artificial Intelligence”,
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Bioinformatics’, ‘Big Data, ‘Biotechnology’, and “Computational
Biology”. Boolean operators (AND, OR) were employed to refine and combine search
terms, enhancing precision and comprehensiveness. The search was restricted to peer-

-reviewed articles published in English.

Study selection
The inclusion criteria for selecting studies were as follows:
« Language: studies published in English.
« Focus: articles explicitly discussing Al applications in bioinformatics or biotechnol-
ogy, particularly regarding big data analysis and innovation.
« Study type: original research, systematic reviews, and meta-analyses.
o Publication date: articles published between 2019 and 2025.
Exclusion criteria included:
1. Non-peer-reviewed sources (e.g., editorials, commentaries, conference abstracts).
2. Studies lacking a direct focus on Al, bioinformatics, and biotechnology.
3. Studies with insufficient methodological rigor (e.g., lacking clear data analysis
methods).
4. Papers with unresolved conflicts in quality assessment (e.g., studies with unclear
methodologies and conflicting results).

Screening process
The initial database search yielded 264 articles. After removing duplicates using End-
Note and Mendeley, 175 unique records remained. These were subjected to a two-stage
screening process:
1. Title and abstract screening: the titles and abstracts of all articles were reviewed
for relevance. Articles failing to meet the inclusion criteria were excluded.
2. Full-text screening: full-text versions of the remaining articles were assessed
against the inclusion and exclusion criteria.
After this screening process, 92 studies met all criteria and were included in the final
review.

Data extraction
Data were systematically extracted using a standardised form. Key data points collected
included:
« Study characteristics: author(s), year of publication, study design, and region of
origin.
o Al applications: specific AI methods or algorithms used (e.g., machine learning,
deep learning, natural language processing) and their roles in bioinformatics and
biotechnology.
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« Big data integration: description of datasets analysed (e.g., omics data, structural
biology data, clinical datasets).
 Outcomes and limitations: study findings, reported challenges, and limitations,
including algorithmic bias and dataset quality.
The data extraction process was independently conducted by two reviewers, with dis-
crepancies resolved through discussion to ensure accuracy.

Quality assessment

The Joanna Briggs Institute (JBI) Critical Appraisal Tools were employed to evaluate the
quality of the selected studies. Criteria such as methodological rigor, risk of bias, and
result validity were assessed. All 92 studies included in this review met high-quality
standards, ensuring robust methodologies, rigorous validation, and minimal risk of bias.
The studies were assessed based on the clarity of their research design, data collection
methods, statistical analyses, and overall reliability. Since all included studies demon-
strated strong methodological rigor, no studies were excluded due to quality concerns.
This ensures that the synthesis and conclusions of this review are built upon reliable,
peer-reviewed, and well-supported research.

Data synthesis

A mixed narrative and descriptive synthesis approach was employed to analyse and
present findings from the included studies. Data were organised thematically to high-
light key areas of Al application, such as big data analysis, precision medicine, drug
discovery, and genomics.

To enhance clarity and objectivity, a quantitative layer was added to the synthesis by
categorising all 92 included studies based on Al techniques used, domains of application,
and publication year. These trends were analysed using frequency counts and percentage
distributions. The synthesised data are visually summarised through tables and figures
presented in the Results section. These visual elements support the identification of
dominant AI methods, domain-specific trends, and temporal publication patterns.

Due to heterogeneity in study designs, Al architectures, and research objectives,
a formal statistical meta-analysis was not feasible. However, this structured descriptive
approach enables a comprehensive and transparent exploration of Al's role in bioin-
formatics. To provide a transparent overview of the study selection process, a PRISMA
flow diagram is included (Fig. 1), detailing the number of records identified, screened,
and included in the review, along with reasons for exclusion at each stage.
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Fig. 1. The PRISMA flow diagram

Results of meta-analysis

This section presents the quantitative synthesis of 92 peer-reviewed studies analysed
in this review. The goal is to illuminate trends in the adoption of artificial intelligence
(AI) across bioinformatics applications by categorising AI methods used, domains of
application, and publication timelines.

1. Al techniques used (Tab. 1; Fig. 2)
Across all 92 studies, Al techniques were classified into primary categories. Some studies

used multiple methods.

Tab. 1. The Al techniques used in Frequencies and Percentages

Al Technique Frequency Percentage [%]
Machine Learning (ML) 43 46.7

Deep Learning (DL) 35 38.0

Natural Language Processing (NLP) 13 14.1

Quantum AI / Quantum-Assisted ML 9 9.8

Federated / Privacy-Preserving Al 4 43
Evolutionary Algorithms 3 3.3

Explainable AI (XAI) 5 5.4
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Fig. 2. The frequency of Al techniques in bioinformatics studies

2. Bioinformatics domains of application (Tab. 2; Fig. 3)

The studies were mapped to their bioinformatics domains based on the context and
datasets used. Genomics remains the leading domain for AI applications, with drug
discovery and multiomics close behind.

Tab. 2. The domains used in references included in this article

Domain Frequency Percentage [%]
Genomics and Genome Analysis 31 33.7
Multiomics Integration 16 17.4
Proteomics and Structural Biology 14 15.2

Drug Discovery and Development 21 22.8

Precision/ Personalised Medicine 11 12.0
Microbiome/ Metagenomics 4 43

Network Biology/ Systems Biology 6 6.5

L Precision Medicine
Microbiome

Network Biology

Drug Discovery

Genomics

Proteomics

Multiomics

Fig. 3. The distribution of bioinformatics domains

172



Publication year analysis shows a sharp acceleration in the last three years (Tab. 3).

Tab. 3. The Number of publications used in this article according to their years of publication

Year Number of publications
2019 2

2020 1

2021 4

2022 9

2023 24

2024 38

2025 14 (as of early 2025)

3. Cross-domain and cross-tech trends

« AlphaFold and structural DL models dominate proteomics research from 2021
onward.

o NLP methods (e.g., BloBERT, literature mining) are increasingly applied in systems
biology and clinical data mining.

+ Quantum-assisted Al has grown in visibility but remains exploratory.

o Privacy-preserving techniques (e.g., federated learning) appear primarily in studies
from 2023-2025, signalling emerging interest in ethical Al integration.

Discussion

The foundations of bioinformatics and Al in biotechnology
Bioinformatics serves as the cornerstone for the analysis and interpretation of complex
biological data, enabling researchers to decode the information embedded in DNA, RNA,
and proteins. Advances in sequencing technologies, such as next-generation sequencing
(NGS) and single-cell sequencing, generate massive datasets with unparalleled detail,
covering entire genomes, transcriptomes, and proteomes (Satam et al., 2023). These
omics technologies have revolutionised our understanding of biological systems but
also introduced significant computational challenges. For example, integrating and ana-
lysing multi-omics datasets is complicated by data heterogeneity, noise, and sheer scale
(Zhao etal., 2022). Specialised bioinformatics tools are required to manage and interpret
this data, from assembling genomic sequences to modelling metabolic networks and
visualising complex interactions between cellular components (Aradhya et al., 2023).
Simultaneously, artificial intelligence has emerged as an indispensable tool in ad-
dressing these computational demands. At its core, Al encompasses machine learning
(ML), a branch of algorithms designed to identify patterns and relationships in data with-
out explicit programming. Among ML techniques, deep learning has shown remarkable
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efficacy in extracting insights from high-dimensional data (Datta et al., 2024). Neural
networks, particularly convolutional and recurrent architectures, are now extensively
applied in bioinformatics to predict protein folding, identify genetic variants associated
with diseases, and analyse gene expression patterns (Jamialahmadi et al., 2024). These
methods enable tasks such as unsupervised clustering of transcriptomic data, prediction
of protein-protein interactions, and real-time data-driven diagnostics (Quazi, 2022).

The integration of Al into bioinformatics workflows significantly enhances their
efficiency and accuracy. Al algorithms enable the interpretation of complex datasets
by overcoming computational bottlenecks, automating repetitive processes, and en-
hancing scalability (Ayyagiri et al., 2024). For instance, deep learning models trained
on large datasets of known genetic mutations and phenotypic outcomes can predict
the pathogenicity of novel mutations with impressive accuracy (Brandes et al., 2023).
Furthermore, natural language processing (NLP) algorithms have been employed to
extract and synthesize knowledge from the vast corpus of scientific literature, offering
researchers insights into emerging discoveries across the life sciences (Aradhya et al.,
2023; Spurney et al., 2021).

This convergence of Al and bioinformatics transforms biotechnology by enabling
researchers to tackle questions that were previously intractable. AI-powered approaches
are drive precision medicine by integrating genomic data with patient-specific infor-
mation to tailor therapies (Carini, Seyhan, 2024). They also accelerate the discovery
of novel drug candidates, optimising CRISPR gene-editing systems, and elucidating
the molecular basis of complex diseases like cancer and neurodegenerative disorders
(Nojadeh et al., 2023). The ability of Al to augment bioinformatics pipelines ensures
that biological big data can be translated into meaningful insights, advancing our un-
derstanding of life processes and empowering innovations in medicine and agriculture
(Huo, Wang, 2024).

Big data in bioinformatics: a growing challenge
Biological big data has grown exponentially due to advancements in high-throughput
sequencing, structural biology, and clinical research, yielding datasets of unprecedented
scale and complexity. This phenomenon is aptly described by the “3Vs”: volume, variety,
and velocity (Munawar et al., 2022). Volume captures the immense size of datasets,
exemplified by terabytes generated in a single next-generation sequencing (NGS) run.
Variety underscores the diversity of data types, from genomic sequences to proteomic
profiles, medical imaging, and patient records. Velocity refers to the rapid pace of data
generation, driven by technologies like single-cell sequencing and real-time biosensors
(Yang et al., 2023; Vitorino, 2024).

Managing this deluge of data is a formidable challenge. Storing such vast datasets
requires scalable solutions, often leveraging cloud computing infrastructure to address
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capacity and access demands (Al-Kateeb, Abdullah, 2024). Data integration is equally
complex, necessitating harmonisation across disparate sources, such as multi-omics
datasets, which vary in formats, scales, and processing techniques. Effective integration
enables researchers to identify meaningful correlations and build holistic models of
biological systems (Kumar et al., 2023).

Interpretation is particularly challenging due to the inherent noise, heterogeneity,
and high dimensionality of biological data. Sophisticated machine learning techniques,
including neural networks and clustering algorithms, are essential for deriving insights.
For example, AT models have been employed to detect disease-associated patterns in
genomic data, providing key insights into conditions like cancer and rare genetic dis-
orders (Badrulhisham et al., 2023; Ng et al., 2023).

Computational systems biology has emerged as a solution to address these chal-
lenges by focusing on the networks and interactions underlying biological phenomena.
Network-based models, including dynamic biomarkers, provide powerful tools to study
diseases as systems-level perturbations rather than isolated molecular events (Tang et al.,
2022). These advancements have enabled breakthroughs in precision medicine, drug
discovery, and translational research, paving the way for transformative applications
in biotechnology (Zitnik et al., 2024).

Key Al Techniques in Bioinformatics

The integration of Artificial Intelligence (AI) into bioinformatics has led to transforma-
tive advances in the field, with specific Al techniques enabling significant breakthroughs
in data analysis, structure prediction, and pattern recognition (Singh et al., 2023).
Among these, machine learning (ML) methods such as clustering, classification, and
regression have been pivotal in analysing complex datasets from genomics, proteomics,
and other omics studies (Arjmand et al., 2022). For example, AI-powered ML techniques
are extensively used to identify disease biomarkers by uncovering hidden patterns in
large-scale datasets (Chen et al., 2025).

Deep learning, a subset of Al has revolutionised structural biology, particularly
in protein folding and prediction. AlphaFold, developed by DeepMind, stands as
a landmark achievement by predicting protein structures with remarkable accuracy
directly from amino acid sequences (Yang et al., 2023). Building on this foundation,
AlphaFold-Multimer has expanded these capabilities to accurately model protein-
-protein interactions, facilitating breakthroughs in structural biology and rational
drug design. Its ability to predict the structures of protein complexes has accelerated
the discovery of protein-target interactions, aiding in antibody design, enzyme engi-
neering, and therapeutic protein formulation (Uzoeto et al., 2024). This advancement
has been instrumental in drug discovery, where understanding protein-ligand binding
and receptor interactions is crucial for developing novel therapeutics. In structural

175

AB0|0uy23101q I SYBnoJYP{EaIq 0Jul ejep Big BuILLIOJSURI} ;| SI89L SINBULIOMIOIG



Kirolos Eskandar

biology, AlphaFold-Multimer has provided new insights into macromolecular assem-
blies, enabling researchers to explore previously intractable protein complexes with
high confidence (Varadi et al., 2022).

Additional innovations, like RoseTTAFold and CollabFold, have introduced com-
putational efficiencies and broadened accessibility to protein modelling (Nussinov et al.,
2022). Natural Language Processing (NLP) is another key AI application, enabling
bioinformatics to extract insights from biomedical literature and clinical records. These
methods aid in mining critical information for drug-target interactions and patient
stratification in personalised medicine. Platforms like BioBERT have significantly
improved the extraction of context-specific biological insights (Q. Chen et al., 2021).

Evolutionary algorithms further contribute by optimising molecular designs and
refining models in systems biology. They leverage principles of evolutionary biology
to develop new drugs and synthesize novel compounds, showcasing AI's adaptability
to various biological challenges (Vora et al., 2023).

Transformative applications at the intersection

The integration of Al and bioinformatics has catalysed transformative advances across
several domains in biotechnology. Precision medicine, drug discovery, genomics, syn-
thetic biology, and microbiome research have all benefited from the synergies of these
two fields (Mohseni, Ghorbani, 2024).

In precision medicine, Al-powered bioinformatics has enhanced the identification
of biomarkers, improved patient stratification, and enabled predictive analytics for
treatment outcomes. Al-driven algorithms analyse omics data and clinical records to
identify disease subtypes and optimize therapeutic strategies (Liao et al., 2023). For
instance, machine learning has been instrumental in linking genetic variants with
disease risks, thereby facilitating personalised care (Umapathy et al., 2023).

Drug discovery and development have been accelerated by AT’s ability to analyse
large molecular datasets. AI models excel at predicting drug-target interactions, ena-
bling faster identification of viable drug candidates (Visan, Negut, 2024). Applications
in virtual screening and drug repurposing are now commonplace, with AI reducing
the time and cost of the drug development pipeline (Seth et al., 2024). Platforms like
DeepMind’s AlphaFold have transformed structural biology, expediting the design of
drugs targeting specific protein configurations (Qiu et al., 2024).

In genomics, the precision and efficiency of CRISPR-based gene editing have been
significantly enhanced by Al Tools leveraging Al predict off-target effects and guide
optimal design of CRISPR guides. Moreover, machine learning models are applied to
annotate genes, predict their functions, and assess the pathogenicity of genetic variants,
which is pivotal for advancing gene therapy (Aljabali et al., 2024; Abbasi et al., 2025).
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Synthetic biology, another frontier, benefits from AI’s role in designing synthetic
gene circuits and optimising metabolic pathways. Al accelerates the engineering of
cells to produce biofuels, pharmaceuticals, and other high-value products. Predictive
modelling and optimisation algorithms ensure that synthetic constructs perform efhi-
ciently under diverse conditions (Amaan et al., 2024).

In microbiome research, Al has deepened our understanding of the dynamic interac-
tions between host organisms and their microbiota. Al algorithms analyse metagenomic
datasets to unravel the roles of microbial communities in health and disease. These
insights drive the development of novel probiotics and therapeutic interventions, tai-
lored to individual microbiomes (Probul et al., 2024).

Recent breakthroughs and case studies

Recent years have seen transformative breakthroughs at the interface of artificial in-
telligence (AI) and bioinformatics, driving substantial progress in biotechnology. One
of the most notable examples is AlphaFold, developed by DeepMind, which has revo-
lutionised protein structure prediction (Desai et al., 2024). AlphaFold’s deep learning
algorithms achieved remarkable accuracy in predicting protein folding, a challenge
that persisted for decades in biology. This innovation has accelerated research in struc-
tural biology and has applications ranging from drug development to understanding
complex biological systems (Z. Yang et al., 2023). For instance, AlphaFold is actively
used in studies addressing neglected diseases such as Chagas disease and Leishma-
niasis, significantly improving drug discovery pipelines by identifying viable targets
(Gabaldon-Figueira et al., 2023).

Another breakthrough is the role of Al in combating the COVID-19 pandemic.
Al-assisted platforms facilitated vaccine development by identifying antigen can-
didates and optimising vaccine design through techniques like reverse vaccinology
(Olawade et al., 2024). Machine learning models have been instrumental in analysing
genomic sequences of SARS-CoV-2 to predict mutations and their implications on
vaccine efficacy, thereby enabling adaptive vaccine strategies (Lebatteux et al., 2024).
Additionally, AI-powered molecular simulations helped prioritise drug candidates for
therapeutic interventions during the pandemic (Liu et al., 2022).

Case studies highlight the success of integrating Al tools into bioinformatics pipe-
lines for real-world biotechnology applications. In drug discovery, AI frameworks such
as graph neural networks have optimised lead compound identification and protein-
-ligand interaction predictions, significantly shortening the time and cost associated
with conventional methods (Fu, Chen, 2025). For example, Al platforms have supported
the repurposing of drugs for COVID-19 treatment, streamlining the search for effective
compounds (Bagabir et al., 2022).
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These breakthroughs underscore the vast potential of Al in addressing challenges
across diverse domains of biotechnology. The synergy between Al and bioinformatics
continues to transform data-driven research, enabling precise solutions to biological
problems, enhancing our ability to combat diseases, and accelerating innovation across
the life sciences (Mohseni, Ghorbani, 2024).

The case studies highlighted in this section (Tab. 4) were selected based on a com-
bination of factors, including high citation impact, scientific novelty, real-world ap-
plication, and the diversity of AI methodologies employed (e.g., deep learning, graph
neural networks, NLP).

Tab. 4. Summary of selected Al-driven breakthroughs in bioinformatics

Case study Domain Al technique Impact /Application
AlphaFold Proteomics / Deep Learning Revolutionised protein
(Desai et al., 2024) Structural Biology ~ (Transformer-based)  structure prediction;
used in neglected disease
drug pipelines
COVID-19 Genomics / Machine Learning Enabled reverse
Vaccine Design Vaccinology vaccinology and antigen
(Olawade et al., 2024) candidate identification
SARS-CoV-2 Genomics Machine Learning Predicted viral mutations
Mutation Prediction affecting vaccine efficacy;
(Lebatteux et al., 2024) informed adaptive vaccine
strategies
Al Drug Repurposing Drug Discovery Molecular Prioritised compounds
(Liu et al., 2022; Simulation + ML for COVID-19 therapy;
Bagabir et al., 2022) accelerated treatment
pipelines
Graph Neural Networks ~ Drug Discovery Graph Neural Enhanced protein-ligand
for Lead Optimisation Networks interaction modelling;
(Fu, Chen, 2025) improved hit-to-lead
efficiency

When available, relevance was further supported by publication in high-impact journals
or evidence of translational value such as deployment in clinical or pharmaceutical
pipelines.

Challenges and limitations

Al-driven bioinformatics, while transformative, faces several significant challenges and
limitations. One of the foremost technical hurdles is data quality, particularly regard-
ing the completeness, accuracy, and representativeness of datasets used for training
algorithms (Jamarani et al., 2024). High-throughput sequencing and clinical datasets
often contain noise or missing values, which can bias the results and affect repro-
ducibility (Williamson, Prybutok, 2024). Data bias is particularly problematic, with
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underrepresented populations in datasets leading to systemic inequalities in algorithm
performance, as seen in the healthcare domain where racial, gender, and age-related
biases are prevalent (Franklin et al., 2024). For example, algorithms trained on predom-
inantly White or male datasets may fail to generalise across diverse populations, leading
to disparities in AI-driven biomedical research and clinical applications (Nazer et al.,
2023). Furthermore, biases in data collection, such as the overrepresentation of spe-
cific demographics or diseases, result in skewed predictions that exacerbate existing
healthcare inequities (Ferrara, 2023). The lack of standardisation across bioinformatics
pipelines also complicates the integration of diverse data sources, limiting interopera-
bility and consistency in AI outcomes (Brancato et al., 2024).

Privacy and security concerns surrounding AI-driven bioinformatics represent
another major ethical challenge. AI's reliance on large-scale genomic and clinical
datasets raises critical issues regarding data storage, sharing, and potential misuse
(Khalid et al., 2023). One of the most pressing risks is patient re-identification, where
Al models can cross-reference genomic datasets with publicly available records to
deduce an individual’s identity. Such risks threaten patient confidentiality and raise
ethical concerns related to informed consent and data ownership (Ford et al., 2025).
Additionally, Al-driven genetic discrimination has emerged as a growing concern,
where individuals may face bias in employment, insurance, or healthcare decisions
based on Al-predicted disease risks (Cross et al., 2024). Notably, reports have suggested
that certain insurance companies have attempted to use genetic data to assess policy
risks, highlighting the urgent need for stronger legal protections against discriminatory
practices (Tiller et al., 2022).

Regulatory frameworks such as the General Data Protection Regulation (GDPR)
and the Health Insurance Portability and Accountability Act (HIPAA) aim to address
genomic data privacy issues. GDPR enforces strict consent requirements, the right to
data erasure, and limitations on cross-border data transfers, while HIPAA focuses on
ensuring the security of protected health information (Feretzakis et al., 2024). However,
these frameworks face challenges in adapting to the unique risks posed by Al-driven
genetic analytics and automated decision-making. As AI governance policies evolve,
ensuring transparency and fairness in genomic data applications remains an ongoing
challenge for policymakers and researchers (Taddese et al., 2025). Several real-world
incidents illustrate the vulnerabilities associated with genomic data misuse. In 2019,
a major data breach at MyHeritage exposed the genetic information of over 92 million
users, demonstrating the susceptibility of AI-driven genomic databases to cyberattacks
(Arshad et al., 2021). More recently, a credential-stuffing attack on 23andMe in 2023
led to unauthorised access to genetic ancestry data, raising concerns over the security
of direct-to-consumer genetic testing services (Holthouse et al., 2025). Additionally,
reports indicate that AI-powered bioinformatics tools have been leveraged in state
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surveillance programs to analyse DNA samples for tracking ethnic populations, further
complicating the ethical landscape of genomic Al applications (Khalid et al., 2023).
These cases highlight the urgent need for stricter encryption protocols, enhanced data
governance policies, and Al-specific regulatory frameworks to prevent data breaches
and misuse.

Beyond privacy, Al ethics debates have intensified around accountability in au-
tomated decision-making. As Al-driven bioinformatics models increasingly influ-
ence biomedical research and clinical decision-making, the challenge of assigning
responsibility for errors or biases has become critical (Radanliev, 2025). The lack of
transparency in many Al models, often referred to as the “black-box” problem, raises
concerns about interpretability, reproducibility, and trustworthiness in AI-generated
insights (Pedreschi et al., 2019). These issues are particularly pressing in drug discovery,
disease risk assessment, and genetic diagnostics, where incorrect predictions could lead
to flawed medical decisions with significant consequences for patient health. Ensuring
explainability in Al models used in bioinformatics is essential for fostering trust among
researchers, clinicians, and patients (Sadeghi et al., 2024).

AT’s role in biotechnology research also presents challenges in maintaining scientific
integrity. The automation of hypothesis generation and data interpretation introduces
risks of scientific misconduct, including AI-generated errors being misrepresented as
novel findings (Z. Chen et al., 2024). In particular, reliance on Al in bioinformatics
research without proper validation can lead to the propagation of fabricated or bi-
ased results, undermining the credibility of scientific discoveries (Wang et al., 2024).
As Al becomes more integrated into regulatory and clinical decision-making pipelines,
it is imperative to establish ethical frameworks that prioritise transparency, fairness,
and accountability in AI-driven bioinformatics research (Cross et al., 2024).

Interdisciplinary barriers further hinder the seamless integration of Al into bioinfor-
matics. Effective collaboration between biologists, clinicians, and Al experts is essential
to bridge knowledge gaps and ensure that computational methods align with biological
insights (Patel et al., 2024). However, the disconnect between these disciplines often
results in inefficiencies, slowing down the translation of Al innovations into practical
applications. Addressing these challenges requires targeted training programs that
equip researchers across disciplines with the necessary computational and biological
expertise (Wenger et al., 2024). Additionally, fostering interdisciplinary communication
and aligning research methodologies will be critical to optimising the application of
Al-driven bioinformatics in real-world contexts (Dwivedi et al., 2023).

Despite these challenges, Al continues to drive significant advancements in bioin-
formatics and biotechnology. Addressing data bias, enhancing genomic data security,
strengthening AI accountability, and fostering interdisciplinary collaboration will
be key to ensuring the ethical and effective deployment of AI-driven bioinformatics
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solutions. As the field progresses, proactive regulatory measures and continuous dia-
logue between policymakers, researchers, and industry stakeholders will be essential
to balance innovation with ethical responsibility.

Future prospects

The future of Al in bioinformatics is marked by groundbreaking advances in emerg-
ing technologies and transformative approaches to data integration. Among these,
quantum computing holds immense promise in revolutionising the field (Fu, Chen,
2025). Quantum computers, with their unparalleled computational power derived from
phenomena such as superposition and entanglement, are set to redefine our ability to
process and analyse complex biological datasets (Lu et al., 2023). Unlike classical com-
puters, quantum systems can simultaneously evaluate multiple solutions to intricate
problems, significantly accelerating tasks such as protein structure prediction and drug
design (Pei, 2024). These capabilities make quantum computing particularly valuable
for solving optimisation challenges in molecular docking, genomic data analysis, and
systems biology modelling (Pal et al., 2023).

Despite its potential, quantum computing remains in its early stages, with sev-
eral critical limitations preventing its immediate application in bioinformatics. Qubit
stability is a major challenge, as qubits are highly susceptible to decoherence due to
environmental noise, leading to frequent errors in computations (Memon et al., 2024).
Additionally, quantum error rates remain high, requiring sophisticated error-correction
techniques that significantly reduce the number of usable qubits in practical computa-
tions (Zhou et al., 2024). Hardware scalability is another barrier, as current quantum
processors contain only a few hundred qubits, whereas bioinformatics applications
demand stable systems with thousands - if not millions - of qubits to handle large-scale
biological data processing efficiently (Gill, Buyya, 2024). While ongoing advancements
in superconducting qubits, trapped ions, and topological qubits are gradually improv-
ing quantum hardware, experts predict that fully functional, fault-tolerant quantum
computers capable of outperforming classical supercomputers in bioinformatics ap-
plications may not be widely available until 2035-2040 (Aasen et al., 2025). However,
hybrid quantum-classical computing approaches, which leverage the strengths of both
quantum and classical systems, are expected to contribute to practical applications in
bioinformatics and drug discovery within the next decade (Vakili et al., 2025).

In parallel, the trend of integrating multi-omics data is expected to become a cor-
nerstone of personalised medicine. By combining genomics, transcriptomics, pro-
teomics, and metabolomics data, researchers can create comprehensive biological
models that capture the nuances of disease mechanisms and individual variability
(Tanaka, 2025). Al algorithms, particularly those leveraging deep learning, are crit-
ical for decoding these complex datasets, enabling precise biomarker identification

181

AB0|0uy23101q I SYBnoJYP{EaIq 0Jul ejep Big BuILLIOJSURI} ;| SI89L SINBULIOMIOIG



Kirolos Eskandar

and treatment customisation (Taherdoost, Ghofrani, 2024). Multi-omics integration
also facilitates the study of epigenetic changes and their impact on health, which is
essential for understanding diseases such as cancer and neurodegenerative disorders
(C. Chen et al., 2023). As these technologies advance, Al-powered platforms will play
a pivotal role in identifying personalised therapeutic targets and accelerating precision
medicine research.

Personalised health is further supported by advances in wearable technology and
remote monitoring, which provide real-time data on an individual’s physiological
parameters. Al-driven bioinformatics platforms can analyse this influx of data to pre-
dict health risks and recommend interventions, moving healthcare from a reactive to
a proactive model (Ponnarengan et al., 2024). Moreover, the incorporation of federated
learning approaches ensures data privacy by enabling decentralised analysis, which
is particularly relevant for sensitive health and genomic data (Li et al., 2025). These
privacy-preserving AI models allow researchers to collaborate on multi-institutional
datasets without compromising patient confidentiality, facilitating secure and scalable
biomedical discoveries.

Looking ahead, Al and bioinformatics are poised to drive transformative innovations
across biotechnology. From revolutionising drug discovery pipelines through predictive
modelling to facilitating ecological and evolutionary studies, the synergistic integration
of these disciplines could redefine the boundaries of science (Niazi, 2023). As quantum
computing matures over the next two decades, its integration with Al-driven bioinfor-
matics is expected to unlock unprecedented computational capabilities, accelerating
breakthroughs in molecular simulations, protein engineering, and genomic medicine
(Ali, 2023). In the nearer term, continued progress in deep learning, multi-omics data
integration, and secure Al models will shape the next generation of biotechnology ap-
plications (Zhang et al., 2024). Collaborative efforts between computational scientists,
biologists, and material engineers will be essential in overcoming current technological
barriers and realising the full potential of these advancements.

Conclusions

The integration of artificial intelligence and bioinformatics has revolutionised bio-
technology by enabling the efficient processing and interpretation of biological big
data. Al-driven techniques, including machine learning, deep learning, and natural
language processing, have facilitated advancements in precision medicine, drug dis-
covery, synthetic biology, and microbiome research. By automating complex analyses
and uncovering hidden patterns within massive datasets, Al has accelerated biomedical
discoveries and personalised healthcare innovations. However, these advancements
bring significant ethical and regulatory challenges, particularly regarding genomic data
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privacy, algorithmic bias, and Al accountability. Frameworks such as GDPR, HIPAA,
and emerging Al governance policies are essential in addressing concerns related to
patient data protection and Al-driven decision-making transparency, yet ongoing
regulatory evolution is necessary to keep pace with rapid technological progress.

Maximising the potential of Al in bioinformatics requires strong interdisciplinary
collaboration between Al researchers, biologists, clinicians, and policymakers to ensure
both scientific rigor and ethical integrity. Establishing structured AlI-bioinformatics
partnerships through academia-industry collaborations, open-source Al platforms,
and privacy-preserving federated learning models can drive innovation while ensuring
responsible AI deployment. Looking ahead, integrating AI with quantum computing
and multi-omics data analysis will unlock new frontiers in genomic medicine, biomarker
discovery, and evolutionary biology. By addressing current challenges and fostering
cross-disciplinary cooperation, Al and bioinformatics will continue to transform bio-
technology, paving the way for groundbreaking scientific advancements and real-world
applications in healthcare and beyond.

Conflict of interest

The author declare no conflict of interest related to this article.

References

Aasen, D., Aghaee, M., Alam, Z., Andrzejczuk, M., Antipov, A., Astafev, M., Avilovas, L., Barzegar, A,
Bauer, B., Becker, J., Bello-Rivas, ].M., Bhaskar, U., Bocharov, A., Boddapati, S., Bohn, D., Bom-
mer, J., Bonderson, P, Borovsky, J., Bourdet, L., Boutin, S., Brown, T., Campbell, G., Casparis, L.,
Chakravarthi, S., Chao, R., Chapman, B.J., Chatoor, S., Wulff Christensen, A., Codd, P, Cole, W.,
Cooper, P, Corsetti, E, Cui, A., van Dam, W,, El Dandachi, T., Daraeizadeh, S., Dumitrascu, A.,
Ekefjérd, A., Fallahi, S., Galletti, L., Gardner, G., Gatta, R., Gavranovic, H., Goulding, M., Govender, D.,
Griggio, E, Grigoryan, R., Grijalva, S., Gronin, S., Gukelberger, J., Haah, J., Hamdast, M., Hansen, E.B.,
Hastings, M., Heedt, S., Ho, S., Hogaboam, J., Holgaard, L., Van Hoogdalem, K., Indrapiromkul, J.,
Ingerslev, H., Ivancevic, L., Jablonski, S., Jensen, T., Jhoja, J., Jones, J., Kalashnikov, K., Kallaher, R.,
Kalra, R., Karimi, E, Karzig, T., Kimes, S., Kliuchnikov, V., Kloster, M.E., Knapp, C., Knee, D., Koski, J.,
Kostamo, P, Kuesel, J., Lackey, B., Laeven, T., Lai, J., de Lange, G., Larsen, T,, Lee, ., Lee, K., Leum, G.,
Li, K., Lindemann, T., Lucas, M., Lutchyn, R., Madsen, M.H., Madulid, N., Manfra, M., Markussen, S.B.,
Martinez, E., Mattila, M., Mattinson, J., McNeil, R., Mei, A.R. et al. (82 additional authors not shown)
(2025). Roadmap to fault tolerant quantum computation using topological qubit arrays. arXiv (Cornell
University). https://arxiv.org/abs/2502.12252. https://doi.org/10.48550/arxiv.2502.12252

Abbasi, A.E, Asim, M.N,, Dengel, A. (2025). Transitioning from wet lab to artificial intelligence: a sys-
tematic review of Al predictors in CRISPR. Journal of Translational Medicine, 23(1), 153. https://doi.
org/10.1186/512967-024-06013-w

Ali, N.H. (2023). Quantum computing and Al in healthcare: Accelerating complex biological simulations,
genomic data processing, and drug discovery innovations. World Journal of Advanced Research and
Reviews, 20(2), 1466-1484. https://doi.org/10.30574/wjarr.2023.20.2.2325

Aljabali, A.A., El-Tanani, M., Tambuwala, M.M. (2024). Principles of CRISPR-Cas9 technology: Advance-

ments in genome editing and emerging trends in drug delivery. Journal of Drug Delivery Science and
Technology, 92, 105338. https://doi.org/10.1016/.jddst.2024.105338

183

AB0|0uy23101q I SYBnoJYP{EaIq 0Jul ejep Big BuILLIOJSURI} ;| SI89L SINBULIOMIOIG



Kirolos Eskandar

Al-Kateeb, Z.N., Abdullah, D.B. (2024). Unlocking the potential: synergizing IoT, cloud computing, and
big data for a bright future. Iraqi Journal for Computer Science and Mathematics, 5(3), 25. https://doi.
org/10.52866/1jcsm.2024.05.03.001

Alm, C.0. (2024). Centering Humans in Artificial Intelligence. Proceedings of the AAAI Symposium Series,
3(1), 2-3. https://doi.org/10.1609/aaaiss.v3i1.31170

Amaan, A., Prekshi, G., Prachi, S. (2024). Unlocking the transformative power of synthetic biology. Ar-
chives of Biotechnology and Biomedicine, 8(1),009-016. https://doi.org/10.29328/journal.abb.1001039

Aradhya, S., Facio, EM., Metz, H., Manders, T., Colavin, A., Kobayashi, Y., Nykamp, K., Johnson, B.,
Nussbaum, R.L. (2023). Applications of artificial intelligence in clinical laboratory genomics. Amer-
ican Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 193(3), €32057. https://doi.
org/10.1002/ajmg.c.32057

Arjmand, B., Hamidpour, S.K., Tayanloo-Beik, A., Goodarzi, P., Aghayan, H.R., Adibi, H., Larijani, B.
(2022). Machine Learning: A New Prospect in Multi-Omics Data Analysis of Cancer. Frontiers in
Genetics, 13, 824451. https://doi.org/10.3389/fgene.2022.824451

Arshad, S., Arshad, J., Khan, M.M., Parkinson, S. (2021). Analysis of security and privacy challenges for
DNA-genomics applications and databases. Journal of Biomedical Informatics, 119, 103815. https://
doi.org/10.1016/j.j51.2021.103815

Ayyagiri, N.A., Aggarwal, N.A., Jain, N.S. (2024). Enhancing DNA Sequencing Workflow with AI-Driven
Analytics. International Journal for Research Publication and Seminars, 15(3), 203-216. https://doi.
org/10.36676/jrps.v15.i3.1484

Badrulhisham, E, Pogatzki-Zahn, E., Segelcke, D., Spisak, T., Vollert, J. (2023). Machine learning and
artificial intelligence in neuroscience: A primer for researchers. Brain Behavior and Immunity, 115,
470-479. https://doi.org/10.1016/j.bbi.2023.1 1.005

Bagabir, S.A., Ibrahim, N.K., Bagabir, H.A., Ateeq, R.H. (2022). Covid-19 and Artificial Intelligence:
Genome sequencing, drug development and vaccine discovery. Journal of Infection and Public Health,
15(2), 289-296. https://doi.org/10.1016/j.jiph.2022.01.011

Bhatnagar, R., Sardar, S., Beheshti, M., Podichetty, ].T. (2022). How can natural language processing help
model informed drug development?: a review. JAMIA open, 5(2), 0oac043. https://doi.org/10.1093/
jamiaopen/ooac043

Brancato, V., Esposito, G., Coppola, L., Cavaliere, C., Mirabelli, P, Scapicchio, C., Borgheresi, R., Neri, E.,
Salvatore, M., Aiello, M. (2024). Standardizing digital biobanks: integrating imaging, genomic, and clin-
ical data for precision medicine. Journal of Translational Medicine, 22(1), 136. https://doi.org/10.1186/
512967-024-04891-8

Brandes, N., Goldman, G., Wang, C.H., Ye, C.J., Ntranos, V. (2023). Genome-wide prediction of disease
variant effects with a deep protein language model. Nature Genetics, 55(9), 1512-1522. https://doi.
org/10.1038/s41588-023-01465-0

Carini, C., Seyhan, A.A. (2024). Tribulations and future opportunities for artificial intelligence in precision
medicine. Journal of Translational Medicine, 22(1), 411. https://doi.org/10.1186/s12967-024-05067-0

Chen, C., Wang, J., Pan, D., Wang, X,, Xu, Y., Yan, J., Wang, L., Yang, X., Yang, M., Liu, G.P. (2023). Ap-
plications of multi-omics analysis in human diseases. MedComm, 4(4), e315. https://doi.org/10.1002/
mco2.315

Chen, Q., Leaman, R., Allot, A., Luo, L., Wei, C,, Yan, S., Lu, Z. (2021). Artificial Intelligence in Action:
Addressing the COVID-19 Pandemic with Natural Language Processing. Annual Review of Biomedical
Data Science, 4(1), 313-339. https://doi.org/10.1146/annurev-biodatasci-021821-061045

Chen, Y, Hsiao, T,, Lin, C., Fann, Y.C. (2025). Unlocking precision medicine: clinical applications of inte-
grating health records, genetics, and immunology through artificial intelligence. Journal of Biomedical
Science, 32(1), 16. https://doi.org/10.1186/s12929-024-01110-w

184



Chen, Z., Chen, C,, Yang, G., He, X., Chi, X, Zeng, Z., Chen, X. (2024). Research integrity in the era of
artificial intelligence: challenges and responses. Medicine, 103(27), 38811. https://doi.org/10.1097/
MD.0000000000038811

Collins, C., Dennehy, D., Conboy, K., Mikalef, P. (2021). Artificial intelligence in information systems
research: A systematic literature review and research agenda. International Journal of Information
Management, 60, 102383 https://doi.org/10.1016/j.ijinfomgt.2021.102383

Cross, ].L., Choma, M.A., Onofrey, J.A. (2024). Bias in medical AIL: Implications for clinical decision-making.
PLOS digital health, 3(11), €0000651. https://doi.org/10.1371/journal.pdig.0000651

Datta, S.D., Islam, M., Sobuz, M.H.R., Ahmed, S., Kar, M. (2024). Artificial intelligence and machine
learning applications in the project lifecycle of the construction industry: A comprehensive review.
Heliyon, 10(5), €26888. https://doi.org/10.1016/j.heliyon.2024.e26888

Desai, D., Kantliwala, S.V,, Vybhavi, J., Ravi, R., Patel, H., Patel, J. (2024). Review of AlphaFold 3: Trans-
formative Advances in Drug Design and Therapeutics. Cureus, 16(7), €63646. https://doi.org/10.7759/
cureus.63646

Dwivedi, Y.K., Kshetri, N., Hughes, L., Slade, E.L., Jeyaraj, A., Kar, A.K., Baabdullah, A.M., Koohang, A.,
Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M.A., Al-Busaidi, A.S., Balakrishnan, J., Barlette, Y.,
Basu, S., Bose, L, Brooks, L., Buhalis, D., Carter, L., Chowdhury, S., Crick, T., Cunningham, S.W.,
Davies, G.H., Davison, R.M., D¢, R., Dennehy, D., Duan, Y., Dubey, R., Dwivedi, R., Edwards, J.S.,
Flavidn, C., Gauld, R., Grover, V., Hu, M.-C,, Janssen, M., Jones, P, Junglas, I., Khorana, S., Kraus, S.,
Larsen, K.R,, Latreille, P,, Laumer, S., Malik, ET., Mardani, A., Mariani, M., Mithas, S., Mogaji, E.,
Nord, J.H., O’Connor, S., Okumus, E, Pagani, M., Pandey, N., Papagiannidis, S., Pappas, I.O., Pathak, N.,
Pries-Heje, J., Raman, R., Rana, N.P, Rehm, S.-V,, Ribeiro-Navarrete, S., Richter, A., Rowe, E, Sarker, S.,
Stahl, B.C., Tiwari, M.K.,, van der Aalst, W, Venkatesh, V., Viglia, G., Michael Wade, M., Walton, P,
Wirtz, ]., Ryan Wright, R. (2023). Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary
perspectives on opportunities, challenges and implications of generative conversational Al for re-
search, practice and policy. International Journal of Information Management, 71, 102642. https://doi.
org/10.1016/j.ijinfomgt.2023.102642

Feretzakis, G., Papaspyridis, K., Gkoulalas-Divanis, A., Verykios, V.S. (2024). Privacy-Preserving techniques
in generative Al and large language Models: A Narrative review. Information, 15(11), 697. https://doi.
0rg/10.3390/inf015110697

Ferrara, E. (2023). Fairness and Bias in Artificial intelligence: A brief survey of sources, impacts, and
mitigation strategies. Sci, 6(1), 3. https://doi.org/10.3390/sci6010003

Ford, E., Pillinger, S., Stewart, R., Jones, K., Roberts, A., Casey, A., Goddard, K., Nenadic, G. (2025). What
is the patient re-identification risk from using de-identified clinical free text data for health research?
Al and Ethics. https://doi.org/10.1007/s43681-025-00681-0

Franklin, G., Stephens, R., Piracha, M., Tiosano, S., Lehouillier, E, Koppel, R., Elkin, P.L. (2024). The So-
ciodemographic Biases in Machine Learning Algorithms: A Biomedical Informatics Perspective. Life
(Basel, Switzerland), 14(6), 652. https://doi.org/10.3390/1ife14060652

Fu, C., Chen, Q. (2025). The future of pharmaceuticals: Artificial intelligence in drug discovery and de-
velopment. Journal of Pharmaceutical Analysis, 101248. https://doi.org/10.1016/j.jpha.2025.101248

Gabaldon-Figueira, J.C., Martinez-Peinado, N., Escabia, E., Ros-Lucas, A., Chatelain, E., Scandale, I.,
Gascon, J., Pinazo, M.J., Alonso-Padilla, J. (2023). State-of-the-Art in the Drug Discovery Pathway for
Chagas Disease: A Framework for Drug Development and Target Validation. Research and Reports in
Tropical Medicine, 14, 1-19. https://doi.org/10.2147/RRTM.S415273

Gill, S.S., Buyya, R. (2024). Transforming Research with Quantum Computing. Journal of Economy and
Technology. https://doi.org/10.1016/j.ject.2024.07.001

185

£Bojouyaa}01q Ul SyBnoIypealq ojul elep Big BUILLIOJSUBI] 3|y S}9aL SIBLLIOUIONG



Kirolos Eskandar

Holthouse, R., Owens, S., Bhunia, S. (2025). The 23andMe Data Breach: Analyzing credential stuffing attacks,
security vulnerabilities, and mitigation strategies. arXiv (Cornell University). https://doi.org/10.48550/
arxiv.2502.04303

Huo, D., Wang, X. (2024). A new era in healthcare: The integration of artificial intelligence and microbial.
Medicine in Novel Technology and Devices, 23, 100319. https://doi.org/10.1016/j.medntd.2024.100319

Jamarani, A., Haddadj, S., Sarvizadeh, R., Kashani, M.H., Akbari, M., Moradj, S. (2024). Big data and pre-
dictive analytics: A sytematic review of applications. Artificial Intelligence Review, 57(7), 176. https://
doi.org/10.1007/s10462-024-10811-5

Jamialahmadi, H., Khalili-Tanha, G., Nazari, E., Rezaei-Tavirani, M. (2024). Artificial intelligence and
bioinformatics: a journey from traditional techniques to smart approaches. Gastroenterology and
Hepatology from Bed to Bench, 17(3), 241-252. https://doi.org/10.22037/ghfbb.v17i3.2977

Jumper, J., Evans, R,, Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.]., Cowie, A., Romera-
-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M.,
Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W.,,
Kavukcuoglu, K., Kohli, P, Hassabis, D. (2021). Highly accurate protein structure prediction with
AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2
Khalid, N., Qayyum, A., Bilal, M., Al-Fuqaha, A., Qadir, J. (2023). Privacy-preserving artificial intelligence
in healthcare: Techniques and applications. Computers in Biology and Medicine, 158, 106848. https://
doi.org/10.1016/j.compbiomed.2023.106848

Kumar, P, Paul, R K., Roy, H.S., Yeasin, M., Ajit, Paul, A.K. (2024). Big Data Analysis in Computational
Biology and Bioinformatics. Methods in Molecular Biology (Clifton, N.J.), 2719, 181-197. https://doi.
0rg/10.1007/978-1-0716-3461-5_11

Larabi-Marie-Sainte, S., Aburahmah, L., Almohaini, R., Saba, T. (2019). Current Techniques for Diabetes
Prediction: Review and Case Study. Applied Sciences, 9(21), 4604. https://doi.org/10.3390/app9214604

Lebatteux, D., Soudeyns, H., Boucoiran, I., Gantt, S., Diallo, A.B. (2024). Machine learning-based approach
KEVOLVE efficiently identifies SARS-CoV-2 variant-specific genomic signatures. PlosOne, 19(1),
€0296627. https://doi.org/10.1371/journal.pone.0296627

Li, M., Xu, P, Hu, J.,, Tang, Z., Yang, G. (2025). From challenges and pitfalls to recommendations and
opportunities: Implementing federated learning in healthcare. Medical Image Analysis, 101, 103497.
https://doi.org/10.1016/j.media.2025.103497

Liao, ], Li, X,, Gan, Y., Han, S., Rong, P., Wang, W,, Li, W, Zhou, L. (2023). Artificial intelligence assists
precision medicine in cancer treatment. Frontiers in Oncology, 12, 998222. https://doi.org/10.3389/
fonc.2022.998222

Liu, Z., Chen, X., Carter, W,, Moruf, A., Komatsu, T.E., Pahwa, S., Chan-Tack, K., Snyder, K., Petrick, N.,
Cha, K., Lal-Nag, M., Hatim, Q., Thakkar, S., Lin, Y., Huang, R., Wang, D., Patterson, T.A., Tong, W.
(2022). AI-powered drug repurposing for developing COVID-19 treatments. Reference Module in Bio-
medical Sciences, B978-0-12-824010-6.00005-8. https://doi.org/10.1016/B978-0-12-824010-6.00005-8

Lu, Y, Sigov; A., Ratkin, L., Ivanov, L.A., Zuo, M. (2023). Quantum computing and industrial information
integration: A review. Journal of Industrial Information Integration, 35, 100511. https://doi.org/10.1016/
jjii.2023.100511

Memon, Q.A., Ahmad, M.A., Pecht, M. (2024). Quantum Computing: Navigating the future of compu-
tation, challenges, and technological breakthroughs. Quantum Reports, 6(4), 627-663. https://doi.
org/10.3390/quantum6040039

Mobhseni, P,, Ghorbani, A. (2024). Exploring the synergy of artificial intelligence in microbiology: Ad-
vancements, challenges, and future prospects. Deleted Journal, 1, 100005. https://doi.org/10.1016/
j.csbr.2024.100005

186



Munawar, H.S., Ullah, F, Qayyum, S., Shahzad, D. (2022). Big data in construction: current applications and
future opportunities. Big Data and Cognitive Computing, 6(1), 18. https://doi.org/10.3390/bdcc6010018

Nazer, L.H., Zatarah, R., Waldrip, S., Ke, ].X.C., Moukheiber, M., Khanna, A.K., Hicklen, R.S., Mouk-
heiber, L., Moukheiber, D., Ma, H., Mathur, P. (2023). Bias in artificial intelligence algorithms and
recommendations for mitigation. PLOS Digital Health, 2(6), €0000278. https://doi.org/10.1371/journal.
pdig.0000278

Ng, S., Masarone, S., Watson, D., Barnes, M.R. (2023). The benefits and pitfalls of machine learning for bio-
marker discovery. Cell and Tissue Research, 394(1), 17-31. https://doi.org/10.1007/s00441-023-03816-z

Niazi, S.K. (2023). The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and
Manufacturing: The FDA Perspectives. Drug Design, Development and Therapy, 17,2691-2725. https://
doi.org/10.2147/DDDT.S424991

Nouri Nojadeh, J., Bildiren Eryilmaz, N.S., Ergiider, B.I. (2023). CRISPR/Cas9 genome editing for neuro-
degenerative diseases. EXCLI Journal, 22, 567-582. https://doi.org/10.17179/excli2023-6155

Nussinov, R., Zhang, M., Liu, Y, Jang, H. (2022). AlphaFold, Artificial Intelligence (AI), and Allostery.
Journal of Physical Chemistry. B, 126(34), 6372-6383. https://doi.org/10.1021/acs.jpcb.2c04346

Olawade, D.B., Teke, J., Fapohunda, O., Weerasinghe, K., Usman, S.0., Ige, A.O., David-Olawade, A.C.
(2024). Leveraging artificial intelligence in vaccine development: A narrative review. Journal of Mi-
crobiological Methods, 224, 106998. https://doi.org/10.1016/j.mimet.2024.106998

Pal, S., Bhattacharya, M., Lee, S., Chakraborty, C. (2023). Quantum Computing in the Next-Generation
Computational Biology Landscape: From protein folding to molecular Dynamics. Molecular Biotech-
nology, 66(2), 163-178. https://doi.org/10.1007/s12033-023-00765-4

Patel, A.U,, Gu, Q. Esper, R., Maeser, D., Maeser, N. (2024). The crucial role of interdisciplinary confer-
ences in advancing explainable Al in healthcare. BioMedInformatics, 4(2), 1363-1383. https://doi.
org/10.3390/biomedinformatics4020075

Pedreschi, D., Giannotti, F, Guidotti, R., Monreale, A., Ruggieri, S., Turini, E (2019). Meaningful expla-
nations of black box AI decision systems. Proceedings of the AAAI Conference on Artificial Intelligence,
33(01), 9780-9784. https://doi.org/10.1609/aaai.v33101.33019780

Pei, Z. (2024). Computer-aided drug discovery: From traditional simulation methods to language
models and quantum computing. Cell Reports Physical Science, 102334. https://doi.org/10.1016/
jxcrp.2024.102334

Pereira, R., Oliveira, J., Sousa, M. (2020). Bioinformatics and Computational Tools for Next-Generation
Sequencing Analysis in Clinical Genetics. Journal of Clinical Medicine, 9(1), 132. https://doi.org/
10.3390/jcm9010132

Ponnarengan, H., Rajendran, S., Khalkar, V., Devarajan, G., Kamaraj, L. (2024). Data-Driven Healthcare:
The role of computational methods in medical innovation. Computer Modeling in Engineering and
Sciences, 0(0), 1-10. https://doi.org/10.32604/cmes.2024.056605

Probul, N., Huang, Z., Saak, C.C., Baumbach, J., List, M. (2024). AI in microbiome-related healthcare.
Microbial Biotechnology, 17(11), €70027. https://doi.org/10.1111/1751-7915.70027

Qiu, X., Li, H., Ver Steeg, G., Godzik, A. (2024). Advances in Al for Protein Structure Prediction: Implica-
tions for Cancer Drug Discovery and Development. Biomolecules, 14(3), 339. https://doi.org/10.3390/
biom14030339

Quazi, S. (2022). Artificial intelligence and machine learning in precision and genomic medicine. Medical
Oncology (Northwood, London, England), 39(8), 120. https://doi.org/10.1007/s12032-022-01711-1

Radanliev, P. (2025). Al Ethics: Integrating transparency, fairness, and privacy in AI development. Applied
Artificial Intelligence, 39(1). https://doi.org/10.1080/08839514.2025.2463722

187

£Bojouyaa}01q Ul SyBnoIypealq ojul elep Big BUILLIOJSUBI] 3|y S}9aL SIBLLIOUIONG



Kirolos Eskandar

Rawat, R., Yadav, R. (2021). Big data: big data analysis, issues and challenges and technologies. IOP
Conference Series Materials Science and Engineering, 1022(1), 012014. https://doi.org/10.1088/1757-
-899x/1022/1/012014

Sadeghi, Z., Alizadehsani, R., Cifci, M.A., Kausar, S., Rehman, R., Mahanta, P,, Bora, PX., Almasri, A.,
Alkhawaldeh, R.S., Hussain, S., Alatas, B., Shoeibi, A., Moosaei, H., Hladik, M., Nahavandi, S., Parda-
los, PM. (2024). A review of Explainable Artificial Intelligence in healthcare. Computers and Electrical
Engineering, 118, 109370. https://doi.org/10.1016/j.compeleceng.2024.109370

Satam, H., Joshi, K., Mangrolia, U., Waghoo, S., Zaidi, G., Rawool, S., Thakare, R.P,, Banday, S., Mishra, A K.,
Das, G., Malonia, S.K. (2023). Next-Generation Sequencing Technology: Current Trends and Advance-
ments. Biology, 12(7), 997. https://doi.org/10.3390/biology12070997

Seth, A., Thillainadesan, G., Amemiya, Y., Nam, R. (2024). 22. Advancing personalized prostate cancer care:
Utilizing miRNA profiling and machine learning for metastasis prediction. Cancer Genetics, 286-287,
S§7-S8. https://doi.org/10.1016/j.cancergen.2024.08.024

Singh, S., Gupta, H., Sharma, P,, Sahi, S. (2023). Advances in Artificial Intelligence (AI)-assisted ap-
proaches in drug screening. Artificial Intelligence Chemistry, 2(1), 100039. https://doi.org/10.1016/].
aichem.2023.100039

Spurney, R., Schwartz, M., Gobble, M., Sozzani, R., Van den Broeck, L. (2021). Spatiotemporal Gene
Expression Profiling and Network Inference: A Roadmap for Analysis, Visualization, and Key
Gene Identification. Methods in Molecular Biology (Clifton, N.J.), 2328, 47-65. https://doi.org/
10.1007/978-1-0716-1534-8_4

Taddese, A.A., Addis, A.C., Tam, B.T. (2025). Data stewardship and curation practices in AI-based genomics
and automated microscopy image analysis for high-throughput screening studies: promoting robust
and ethical AT applications. Human Genomics, 19(1). https://doi.org/10.1186/s40246-025-00716-x

Taherdoost, H., Ghofrani, A. (2024). AT’s role in revolutionizing personalized medicine by reshaping
pharmacogenomics and drug therapy. Intelligent Pharmacy, 2(5), 643-650. https://doi.org/10.1016/j.
ipha.2024.08.005

Tanaka, M. (2025). From serendipity to precision: integrating Al, Multi-Omics, and Human-Specific
models for personalized neuropsychiatric care. Biomedicines, 13(1), 167. https://doi.org/10.3390/
biomedicines13010167

Tang, S., Yuan, K., Chen, L. (2022). Molecular biomarkers, network biomarkers, and dynamic network

biomarkers for diagnosis and prediction of rare diseases. Fundamental Research, 2(6), 894-902. https://
doi.org/10.1016/j.fmre.2022.07.011

Tiller, J., Lacaze, P., Otlowski, M. (2022). The Australian moratorium on genetics and life insurance: eval-
uating policy compared to Parliamentary recommendations regarding genetic discrimination. Public
Health Research and Practice, 32(4). https://doi.org/10.17061/phrp3242235

Umapathy, V.R,, Rajinikanth B,S., Samuel Raj, R.D., Yadav, S., Munavarah, S.A., Anandapandian, P.A,,
Mary, A.V., Padmavathy, K.R.A. (2023). Perspective of Artificial Intelligence in Disease Diagnosis:
A Review of Current and Future Endeavours in the Medical Field. Cureus, 15(9), e45684. https://doi.
org/10.7759/cureus.45684

Uzoeto, H.O., Cosmas, S., Bakare, T.T., Durojaye, O.A. (2024). AlphaFold-latest: revolutionizing protein
structure prediction for comprehensive biomolecular insights and therapeutic advancements. Beni-Suef
University Journal of Basic and Applied Sciences, 13(1). https://doi.org/10.1186/s43088-024-00503-y

Vakili, M.G., Gorgulla, C., Snider, J., Nigam, A., Bezrukov, D., Varoli, D., Aliper, A., Polykovsky, D.,
Das, KM.P, Cox, H., Lyakisheva, A., Mansob, A.H., Yao, Z., Bitar, L., Tahoulas, D., Cerina, D., Rad-
chenko, E., Ding, X,, Liu, J., Meng, E, Ren, E, Cao, Y., Stagljar, I., Aspuru-Guzik, A., Zhavoronkov, A.
(2025). Quantum-computing-enhanced algorithm unveils potential KRAS inhibitors. Nature Biotech-
nology. https://doi.org/10.1038/s41587-024-02526-3

188



Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D, Stroe, O., Wood, G.,
Laydon, A., Zidek, A., Green, T, Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R.,
Vora, A., Lutfi, M., Figurnov, M., Cowie, A., Hobbs, N., Kohli, P,, Kleywegt, G., Birney, E., Hassabis, D.,
Velankar, S. (2022). AlphaFold Protein Structure Database: massively expanding the structural coverage
of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439-D444.
https://doi.org/10.1093/nar/gkab1061

Visan, A.L, Negut, 1. (2024). Integrating Artificial Intelligence for Drug Discovery in the Context of Rev-
olutionizing Drug Delivery. Life (Basel, Switzerland), 14(2), 233. https://doi.org/10.3390/1ife14020233

Vitorino, R. (2024). Transforming Clinical Research: The Power of High-Throughput Omics Integration.
Proteomes, 12(3), 25. https://doi.org/10.3390/proteomes12030025

Vora, LK., Gholap, A.D., Jetha, K., Thakur, R.R.S., Solanki, H.K., Chavda, V.P. (2023). Artificial Intelligence
in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics, 15(7), 1916. https://doi.
org/10.3390/pharmaceutics15071916

Wang, J., Cheng, Z., Yao, Q,, Liu, L., Xu, D., Hu, G. (2024). Bioinformatics and biomedical informatics
with ChatGPT: Year one review. Quantitative Biology (Beijing, China), 12(4), 345-359. https://doi.
0rg/10.1002/qub2.67

Wenger, D., Hossain, M.S., Senseman, J.R. (2024). AI and the Impact on Journalism Education. Journalism
and Mass Communication Educator. https://doi.org/10.1177/10776958241296497

Williamson, S.M., Prybutok, V. (2024). Balancing Privacy and Progress: A Review of Privacy Challenges,
Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Applied Sciences, 14(2), 675.
https://doi.org/10.3390/app14020675

Yang, C.T., Kristiani, E., Leong, Y.K., Chang, J.S. (2023). Big data and machine learning driven bioprocess-
ing - Recent trends and critical analysis. Bioresource Technology, 372, 128625. https://doi.org/10.1016/j.
biortech.2023.128625

Yang, Z., Zeng, X., Zhao, Y., Chen, R. (2023). AlphaFold2 and its applications in the fields of biology and
medicine. Signal Transduction and Targeted Therapy, 8(1). https://doi.org/10.1038/s41392-023-01381-z

Zhang, Y., Huang, G., Zhao, Y,, Lu, X., Wang, Y., Wang, C., Guo, X., Zhao, C. (2024). Revolutionizing crop
breeding: Next-Generation Artificial intelligence and Big Data-Driven intelligent design. Engineering.
https://doi.org/10.1016/j.eng.2024.11.034

Zhao, J., Feng, Q., Wei, W.Q. (2022). Integration of Omics and Phenotypic Data for Precision Medicine.
Methods in Molecular Biology (Clifton, N.J.), 2486, 19-35. https://doi.org/10.1007/978-1-0716-2265-0_2

Zhou, H., Zhao, C., Cain, M., Bluvstein, D., Duckering, C., Hu, H., Wang, S., Kubica, A., Lukin, M.D.
(2024). Algorithmic fault tolerance for fast quantum computing. arXiv (Cornell University). https://
doi.org/10.48550/arxiv.2406.17653

Zitnik, M., Li, M.M., Wells, A., Glass, K., Gysi, D.M., Krishnan, A., Murali, T.M., Radivojac, P, Roy, S.,
Baudot, A., Bozdag, S., Chen, D.Z., Cowen, L., Devkota, K., Gitter, A., Gosline, S.J.C., Gu, P,, Guzzi, PH.,
Huang, H., Jiang, M., Kesimoglu, Z.N., Koyuturk, M., Ma, J., Pico, A.R., Przulj, N., Przytycka, T.M.,
Raphael, B.J,, Ritz, A., Sharan, R., Shen, Y., Singh, M., Slonim, D.K., Tong, H., Yang, X.H., Yoon, B.-].,
Haiyuan Yu, H.,Milenkovi¢, T. (2024). Current and future directions in network biology. Bioinformatics
Advances, 4(1). https://doi.org/10.1093/bioadv/vbae099

189

£Bojouyaa}01q Ul SyBnoIypealq ojul elep Big BUILLIOJSUBI] 3|y S}9aL SIBLLIOUIONG



Kirolos Eskandar

Bioinformatyka spotyka Al: transformacja duzych zbioréw danych
przetomem w biotechnologii
Streszczenie
Konwergencja bioinformatyki i sztucznej inteligencji (AI) rewolucjonizuje krajobraz biotechnologiczny,
przeksztalcajac duze zbiory danych biologicznych w praktyczne spostrzezenia oraz przelomowe innowacje.
Bioinformatyka, ze swoja zdolnoscig do zarzadzania i analizowania ogromnych zestawéw danych z geno-
miki, proteomiki i biologii systeméw, staje przed wyzwaniami ztozonosci oraz wielkiej skali. Zaawansowane
techniki AT - uczenie maszynowe, glebokie uczenie i przetwarzanie jezyka naturalnego - zapewniajg bez-
precedensowe narzedzia do rozszyfrowywania wzorcéw, tworzenia prognoz oraz napedzania automatyzacji.
Ta synergia katalizuje niezwykly postep w precyzyjnej medycynie, odkrywaniu lekow, edycji genéw i biologii
syntetycznej, zapowiadajac nowa ere przelomoéw opartych na duzej ilosci danych. W przegladzie tym badane
sa podstawy, transformacyjne zastosowania i ostatnie przetomy na styku bioinformatyki i Al a jednoczesnie
podejmowane s3 wyzwania oraz wizualizowanie przyszlosci, w ktérej interdyscyplinarna wspéipraca uwalnia
pelny potencjat tego poteznego partnerstwa.

Stowa kluczowe: sztuczna inteligencja, duze zbiory danych, bioinformatyka, innowacje biotechnologiczne,
biologia obliczeniowa
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