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Abstract 

The convergence of bioinformatics and artificial intelligence (AI) is revolutionising the biotechnology landscape, 

transforming biological big data into actionable insights and groundbreaking innovations. Bioinformatics, with its 

ability to manage and analyse massive datasets from genomics, proteomics, and systems biology, faces challenges of 

complexity and scale. AI’s advanced techniques – machine learning, deep learning, and natural language processing-

provide unprecedented tools for deciphering patterns, making predictions, and driving automation. This synergy has 

catalysed remarkable progress in precision medicine, drug discovery, gene editing, and synthetic biology, heralding a 

new era of data-driven breakthroughs. This review explores the foundations, transformative applications, and recent 

breakthroughs at the intersection of bioinformatics and AI, while addressing challenges and envisioning a future where 

interdisciplinary collaboration unlocks the full potential of this powerful partnership. 
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Introduction 

Bioinformatics, a dynamic interdisciplinary field, integrates biology, computer science, and 

statistics to process and interpret the staggering volumes of data generated by modern biological 

research. This data, often derived from next-generation sequencing, proteomics, metabolomics, 

and structural biology, holds the potential to unlock profound insights into life processes (Pereira 

et al., 2020). However, the complexity, diversity, and scale of biological big data pose significant 
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challenges in storage, analysis, and interpretation. Traditional computational tools, while 

invaluable, are increasingly inadequate to handle this deluge of information efficiently (Rawat, 

Yadav, 2021). 

Artificial Intelligence (AI) has emerged as a transformative technology capable of 

addressing these challenges. AI encompasses a range of computational methods, including machine 

learning (ML), deep learning (DL), and natural language processing (NLP), all designed to emulate 

aspects of human intelligence (Collins et al., 2021). These methods excel at identifying patterns in 

data, predicting outcomes, and automating tasks. In the field of biotechnology, AI has demonstrated 

remarkable success, from predicting protein structures with unprecedented accuracy to accelerating 

drug discovery pipelines and deciphering genomic variants associated with disease (Larabi-Marie-

Sainte et al., 2019; Jumper et al., 2021). 

The intersection of bioinformatics and AI represents a revolutionary paradigm shift. This 

convergence leverages AI’s computational power to enhance the capabilities of bioinformatics, 

addressing critical bottlenecks such as data integration, noise reduction, and multidimensional 

analysis. By combining these two disciplines, researchers can derive actionable insights from 

complex datasets, enabling advancements in precision medicine, synthetic biology, and 

personalized therapeutics (Jamialahmadi et al., 2024). For instance, AI-enhanced bioinformatics 

pipelines are instrumental in decoding cancer genomes, optimising gene-editing tools like CRISPR, 

and understanding microbiome-host interactions (Alm, 2024). 

The aim of this review is to explore the transformative potential of combining AI and 

bioinformatics in biotechnology. By examining their foundational principles, recent breakthroughs, 

and practical applications, this article aims to provide a comprehensive understanding of how these 

fields are converging to drive innovation. The review is structured to first outline the key concepts 

and technologies underpinning bioinformatics and AI, followed by an exploration of their 

synergistic applications. Additionally, it highlights recent breakthroughs, discusses technical and 

ethical challenges, and offers insights into future directions for research and collaboration. This 

discussion is intended not only for researchers and practitioners in computational biology but also 

for a broader audience interested in the profound implications of AI-powered bioinformatics on 

healthcare, agriculture, and environmental sciences. By illuminating this vibrant interdisciplinary 

frontier, this review underscores the immense opportunities for innovation at the nexus of 

bioinformatics and AI. 
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Methodology 

Search strategy 

A systematic literature review was conducted following the PRISMA (Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses) guidelines to ensure methodological transparency and 

reproducibility. Comprehensive searches were performed across prominent scientific databases, 

including PubMed, Google Scholar, Scopus, and Web of Science. The search spanned publications 

from January 2019 to February 2025. 

The search strategy was meticulously designed to capture the breadth and depth of the topic. 

The keywords and Medical Subject Headings (MeSH) terms used included: “Artificial 

Intelligence”, “Bioinformatics”, ‘Big Data’, ‘Biotechnology’, and “Computational Biology”. 

Boolean operators (AND, OR) were employed to refine and combine search terms, enhancing 

precision and comprehensiveness. The search was restricted to peer-reviewed articles published in 

English. 

 

Study selection 

The inclusion criteria for selecting studies were as follows: 

• Language: studies published in English. 

• Focus: articles explicitly discussing AI applications in bioinformatics or biotechnology, 

particularly regarding big data analysis and innovation. 

• Study type: original research, systematic reviews, and meta-analyses. 

• Publication date: articles published between 2019 and 2025. 

Exclusion criteria included: 

1. Non-peer-reviewed sources (e.g., editorials, commentaries, conference abstracts). 

2. Studies lacking a direct focus on AI, bioinformatics, and biotechnology. 

3. Studies with insufficient methodological rigor (e.g., lacking clear data analysis methods). 

4. Papers with unresolved conflicts in quality assessment (e.g., studies with unclear 

methodologies and conflicting results). 
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Screening process 

The initial database search yielded 264 articles. After removing duplicates using EndNote and 

Mendeley, 175 unique records remained. These were subjected to a two-stage screening process: 

1. Title and abstract screening: the titles and abstracts of all articles were reviewed for relevance. 

Articles failing to meet the inclusion criteria were excluded. 

2. Full-text screening: full-text versions of the remaining articles were assessed against the 

inclusion and exclusion criteria. 

After this screening process, 92 studies met all criteria and were included in the final review. 

 

Data extraction 

Data were systematically extracted using a standardised form. Key data points collected included: 

• Study characteristics: author(s), year of publication, study design, and region of origin. 

• AI applications: specific AI methods or algorithms used (e.g., machine learning, deep learning, 

natural language processing) and their roles in bioinformatics and biotechnology. 

• Big data integration: description of datasets analysed (e.g., omics data, structural biology data, 

clinical datasets). 

• Outcomes and limitations: study findings, reported challenges, and limitations, including 

algorithmic bias and dataset quality. 

The data extraction process was independently conducted by two reviewers, with discrepancies 

resolved through discussion to ensure accuracy. 

 

Quality assessment 

The Joanna Briggs Institute (JBI) Critical Appraisal Tools were employed to evaluate the quality 

of the selected studies. Criteria such as methodological rigor, risk of bias, and result validity were 

assessed. All 92 studies included in this review met high-quality standards, ensuring robust 

methodologies, rigorous validation, and minimal risk of bias. The studies were assessed based on 

the clarity of their research design, data collection methods, statistical analyses, and overall 

reliability. Since all included studies demonstrated strong methodological rigor, no studies were 

excluded due to quality concerns. This ensures that the synthesis and conclusions of this review 

are built upon reliable, peer-reviewed, and well-supported research. 
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Data synthesis 

A mixed narrative and descriptive synthesis approach was employed to analyse and present 

findings from the included studies. Data were organized thematically to highlight key areas of AI 

application, such as big data analysis, precision medicine, drug discovery, and genomics. 

To enhance clarity and objectivity, a quantitative layer was added to the synthesis by 

categorising all 92 included studies based on AI techniques used, domains of application, and 

publication year. These trends were analysed using frequency counts and percentage distributions. 

The synthesized data are visually summarised through tables and figures presented in the Results 

section. These visual elements support the identification of dominant AI methods, domain-specific 

trends, and temporal publication patterns. 

Due to heterogeneity in study designs, AI architectures, and research objectives, a formal 

statistical meta-analysis was not feasible. However, this structured descriptive approach enables a 

comprehensive and transparent exploration of AI’s role in bioinformatics. To provide a transparent 

overview of the study selection process, a PRISMA flow diagram is included (Fig. 1), detailing the 

number of records identified, screened, and included in the review, along with reasons for exclusion 

at each stage. 

 

 

Fig. 1. The PRISMA flow diagram 
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Results of meta-analysis 

This section presents the quantitative synthesis of 92 peer-reviewed studies analysed in this review. 

The goal is to illuminate trends in the adoption of artificial intelligence (AI) across bioinformatics 

applications by categorising AI methods used, domains of application, and publication timelines. 

 

1. AI techniques used (Tab. 1; Fig. 2) 

Across all 92 studies, AI techniques were classified into primary categories. Some studies used 

multiple methods. 

 

Tab. 1. The AI techniques used in Frequencies and Percentages 

AI Technique Frequency Percentage (%) 

Machine Learning (ML) 43 46.7 

Deep Learning (DL) 35 38.0 

Natural Language Processing (NLP) 13 14.1 

Quantum AI / Quantum-Assisted ML 9 9.8 

Federated / Privacy-Preserving AI 4 4.3 

Evolutionary Algorithms 3 3.3 

Explainable AI (XAI) 5 5.4 

 

 

Fig. 2. The frequency of AI techniques in bioinformatics studies 
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2. Bioinformatics domains of application (Tab. 2; Fig. 3) 

The studies were mapped to their bioinformatics domains based on the context and datasets used. 

Genomics remains the leading domain for AI applications, with drug discovery and multiomics 

close behind. 

 

Tab. 2. The domains used in references included in this article 

Domain Frequency Percentage (%) 

Genomics and Genome Analysis 31 33.7 

Multiomics Integration 16 17.4 

Proteomics and Structural Biology 14 15.2 

Drug Discovery and Development 21 22.8 

Precision/ Personalised Medicine 11 12.0 

Microbiome/ Metagenomics 4 4.3 

Network Biology/ Systems Biology 6 6.5 

 

 

Fig. 3. The distribution of bioinformatics domains 

 

Publication year analysis shows a sharp acceleration in the last three years (Tab. 3). 
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Tab. 3. The Number of publications used in this article according to their years of publication 

Year Number of publications 

2019 2 

2020 1 

2021 4 

2022 9 

2023 24 

2024 38 

2025 14 (as of early 2025) 

 

3. Cross-domain and cross-tech trends 

• AlphaFold and structural DL models dominate proteomics research from 2021 onward. 

• NLP methods (e.g., BioBERT, literature mining) are increasingly applied in systems biology 

and clinical data mining. 

• Quantum-assisted AI has grown in visibility but remains exploratory. 

• Privacy-preserving techniques (e.g., federated learning) appear primarily in studies from 2023–

2025, signalling emerging interest in ethical AI integration. 

 

Discussion 

The foundations of bioinformatics and AI in biotechnology 

Bioinformatics serves as the cornerstone for the analysis and interpretation of complex biological 

data, enabling researchers to decode the information embedded in DNA, RNA, and proteins. 

Advances in sequencing technologies, such as next-generation sequencing (NGS) and single-cell 

sequencing, generate massive datasets with unparalleled detail, covering entire genomes, 

transcriptomes, and proteomes (Satam et al., 2023). These omics technologies have revolutionized 

our understanding of biological systems but also introduced significant computational challenges. 

For example, integrating and analysing multi-omics datasets is complicated by data heterogeneity, 

noise, and sheer scale (Zhao et al., 2022). Specialised bioinformatics tools are required to manage 

and interpret this data, from assembling genomic sequences to modelling metabolic networks and 

visualising complex interactions between cellular components (Aradhya et al., 2023). 

Simultaneously, artificial intelligence has emerged as an indispensable tool in addressing 

these computational demands. At its core, AI encompasses machine learning (ML), a branch of 

algorithms designed to identify patterns and relationships in data without explicit programming. 

Among ML techniques, deep learning has shown remarkable efficacy in extracting insights from 

high-dimensional data (Datta et al., 2024). Neural networks, particularly convolutional and 
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recurrent architectures, are now extensively applied in bioinformatics to predict protein folding, 

identify genetic variants associated with diseases, and analyse gene expression patterns 

(Jamialahmadi et al., 2024). These methods enable tasks such as unsupervised clustering of 

transcriptomic data, prediction of protein-protein interactions, and real-time data-driven 

diagnostics (Quazi, 2022). 

The integration of AI into bioinformatics workflows significantly enhances their efficiency 

and accuracy. AI algorithms enable the interpretation of complex datasets by overcoming 

computational bottlenecks, automating repetitive processes, and enhancing scalability (Ayyagiri et 

al., 2024). For instance, deep learning models trained on large datasets of known genetic mutations 

and phenotypic outcomes can predict the pathogenicity of novel mutations with impressive 

accuracy (Brandes et al., 2023). Furthermore, natural language processing (NLP) algorithms have 

been employed to extract and synthesize knowledge from the vast corpus of scientific literature, 

offering researchers insights into emerging discoveries across the life sciences (Aradhya et al., 

2023; Spurney et al., 2021). 

This convergence of AI and bioinformatics transforms biotechnology by enabling 

researchers to tackle questions that were previously intractable. AI-powered approaches are drive 

precision medicine by integrating genomic data with patient-specific information to tailor therapies 

(Carini, Seyhan, 2024). They also accelerate the discovery of novel drug candidates, optimising 

CRISPR gene-editing systems, and elucidating the molecular basis of complex diseases like cancer 

and neurodegenerative disorders (Nojadeh et al., 2023). The ability of AI to augment 

bioinformatics pipelines ensures that biological big data can be translated into meaningful insights, 

advancing our understanding of life processes and empowering innovations in medicine and 

agriculture (Huo, Wang, 2024). 

 

Big data in bioinformatics: a growing challenge 

Biological big data has grown exponentially due to advancements in high-throughput sequencing, 

structural biology, and clinical research, yielding datasets of unprecedented scale and complexity. 

This phenomenon is aptly described by the “3Vs”: volume, variety, and velocity (Munawar et al., 

2022). Volume captures the immense size of datasets, exemplified by terabytes generated in a 

single next-generation sequencing (NGS) run. Variety underscores the diversity of data types, from 

genomic sequences to proteomic profiles, medical imaging, and patient records. Velocity refers to 
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the rapid pace of data generation, driven by technologies like single-cell sequencing and real-time 

biosensors (Yang et al., 2023; Vitorino, 2024). 

Managing this deluge of data is a formidable challenge. Storing such vast datasets requires 

scalable solutions, often leveraging cloud computing infrastructure to address capacity and access 

demands (Al-Kateeb, Abdullah, 2024). Data integration is equally complex, necessitating 

harmonisation across disparate sources, such as multi-omics datasets, which vary in formats, 

scales, and processing techniques. Effective integration enables researchers to identify meaningful 

correlations and build holistic models of biological systems (Kumar et al., 2023). 

Interpretation is particularly challenging due to the inherent noise, heterogeneity, and high 

dimensionality of biological data. Sophisticated machine learning techniques, including neural 

networks and clustering algorithms, are essential for deriving insights. For example, AI models 

have been employed to detect disease-associated patterns in genomic data, providing key insights 

into conditions like cancer and rare genetic disorders (Badrulhisham et al., 2023; Ng et al., 2023). 

Computational systems biology has emerged as a solution to address these challenges by 

focusing on the networks and interactions underlying biological phenomena. Network-based 

models, including dynamic biomarkers, provide powerful tools to study diseases as systems-level 

perturbations rather than isolated molecular events (Tang et al., 2022). These advancements have 

enabled breakthroughs in precision medicine, drug discovery, and translational research, paving 

the way for transformative applications in biotechnology (Zitnik et al., 2024). 

 

Key AI Techniques in Bioinformatics 

The integration of Artificial Intelligence (AI) into bioinformatics has led to transformative 

advances in the field, with specific AI techniques enabling significant breakthroughs in data 

analysis, structure prediction, and pattern recognition (Singh et al., 2023). Among these, machine 

learning (ML) methods such as clustering, classification, and regression have been pivotal in 

analysing complex datasets from genomics, proteomics, and other omics studies (Arjmand et al., 

2022). For example, AI-powered ML techniques are extensively used to identify disease 

biomarkers by uncovering hidden patterns in large-scale datasets (Chen et al., 2025). 

Deep learning, a subset of AI, has revolutionised structural biology, particularly in protein 

folding and prediction. AlphaFold, developed by DeepMind, stands as a landmark achievement by 

predicting protein structures with remarkable accuracy directly from amino acid sequences (Yang 
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et al., 2023). Building on this foundation, AlphaFold-Multimer has expanded these capabilities to 

accurately model protein-protein interactions, facilitating breakthroughs in structural biology and 

rational drug design. Its ability to predict the structures of protein complexes has accelerated the 

discovery of protein-target interactions, aiding in antibody design, enzyme engineering, and 

therapeutic protein formulation (Uzoeto et al., 2024). This advancement has been instrumental in 

drug discovery, where understanding protein-ligand binding and receptor interactions is crucial for 

developing novel therapeutics. In structural biology, AlphaFold-Multimer has provided new 

insights into macromolecular assemblies, enabling researchers to explore previously intractable 

protein complexes with high confidence (Varadi et al., 2022). 

Additional innovations, like RoseTTAFold and CollabFold, have introduced computational 

efficiencies and broadened accessibility to protein modelling (Nussinov et al., 2022). Natural 

Language Processing (NLP) is another key AI application, enabling bioinformatics to extract 

insights from biomedical literature and clinical records. These methods aid in mining critical 

information for drug-target interactions and patient stratification in personalized medicine. 

Platforms like BioBERT have significantly improved the extraction of context-specific biological 

insights (Q. Chen et al., 2021). 

Evolutionary algorithms further contribute by optimising molecular designs and refining 

models in systems biology. They leverage principles of evolutionary biology to develop new drugs 

and synthesize novel compounds, showcasing AI’s adaptability to various biological challenges 

(Vora et al., 2023). 

 

Transformative applications at the intersection 

The integration of AI and bioinformatics has catalysed transformative advances across several 

domains in biotechnology. Precision medicine, drug discovery, genomics, synthetic biology, and 

microbiome research have all benefited from the synergies of these two fields (Mohseni, Ghorbani, 

2024). 

In precision medicine, AI-powered bioinformatics has enhanced the identification of 

biomarkers, improved patient stratification, and enabled predictive analytics for treatment 

outcomes. AI-driven algorithms analyse omics data and clinical records to identify disease 

subtypes and optimize therapeutic strategies (Liao et al., 2023). For instance, machine learning has 
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been instrumental in linking genetic variants with disease risks, thereby facilitating personalized 

care (Umapathy et al., 2023). 

Drug discovery and development have been accelerated by AI’s ability to analyse large 

molecular datasets. AI models excel at predicting drug-target interactions, enabling faster 

identification of viable drug candidates (Visan, Negut, 2024). Applications in virtual screening and 

drug repurposing are now commonplace, with AI reducing the time and cost of the drug 

development pipeline (Seth et al., 2024). Platforms like DeepMind’s AlphaFold have transformed 

structural biology, expediting the design of drugs targeting specific protein configurations (Qiu et 

al., 2024). 

In genomics, the precision and efficiency of CRISPR-based gene editing have been 

significantly enhanced by AI. Tools leveraging AI predict off-target effects and guide optimal 

design of CRISPR guides. Moreover, machine learning models are applied to annotate genes, 

predict their functions, and assess the pathogenicity of genetic variants, which is pivotal for 

advancing gene therapy (Aljabali et al., 2024; Abbasi et al., 2025). 

Synthetic biology, another frontier, benefits from AI’s role in designing synthetic gene 

circuits and optimising metabolic pathways. AI accelerates the engineering of cells to produce 

biofuels, pharmaceuticals, and other high-value products. Predictive modelling and optimisation 

algorithms ensure that synthetic constructs perform efficiently under diverse conditions (Amaan et 

al., 2024). 

In microbiome research, AI has deepened our understanding of the dynamic interactions 

between host organisms and their microbiota. AI algorithms analyse metagenomic datasets to 

unravel the roles of microbial communities in health and disease. These insights drive the 

development of novel probiotics and therapeutic interventions, tailored to individual microbiomes 

(Probul et al., 2024). 

 

Recent breakthroughs and case studies 

Recent years have seen transformative breakthroughs at the interface of artificial intelligence (AI) 

and bioinformatics, driving substantial progress in biotechnology. One of the most notable 

examples is AlphaFold, developed by DeepMind, which has revolutionized protein structure 

prediction (Desai et al., 2024). AlphaFold's deep learning algorithms achieved remarkable accuracy 

in predicting protein folding, a challenge that persisted for decades in biology. This innovation has 
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accelerated research in structural biology and has applications ranging from drug development to 

understanding complex biological systems (Z. Yang et al., 2023). For instance, AlphaFold is 

actively used in studies addressing neglected diseases such as Chagas disease and Leishmaniasis, 

significantly improving drug discovery pipelines by identifying viable targets (Gabaldón-Figueira 

et al., 2023). 

Another breakthrough is the role of AI in combating the COVID-19 pandemic. AI-assisted 

platforms facilitated vaccine development by identifying antigen candidates and optimising 

vaccine design through techniques like reverse vaccinology (Olawade et al., 2024). Machine 

learning models have been instrumental in analysing genomic sequences of SARS-CoV-2 to 

predict mutations and their implications on vaccine efficacy, thereby enabling adaptive vaccine 

strategies (Lebatteux et al., 2024). Additionally, AI-powered molecular simulations helped 

prioritise drug candidates for therapeutic interventions during the pandemic (Liu et al., 2022). 

Case studies highlight the success of integrating AI tools into bioinformatics pipelines for real-

world biotechnology applications. In drug discovery, AI frameworks such as graph neural networks 

have optimized lead compound identification and protein-ligand interaction predictions, 

significantly shortening the time and cost associated with conventional methods (Fu, Chen, 2025). 

For example, AI platforms have supported the repurposing of drugs for COVID-19 treatment, 

streamlining the search for effective compounds (Bagabir et al., 2022). 

These breakthroughs underscore the vast potential of AI in addressing challenges across diverse 

domains of biotechnology. The synergy between AI and bioinformatics continues to transform 

data-driven research, enabling precise solutions to biological problems, enhancing our ability to 

combat diseases, and accelerating innovation across the life sciences (Mohseni, Ghorbani, 2024).  

The case studies highlighted in this section (Tab. 4) were selected based on a combination of 

factors, including high citation impact, scientific novelty, real-world application, and the diversity 

of AI methodologies employed (e.g., deep learning, graph neural networks, NLP). 

 

Tab. 4. Summary of selected AI-driven breakthroughs in bioinformatics 

Case study Domain AI technique Impact /Application 

AlphaFold (Desai et al., 2024) 
Proteomics / Structural 

Biology 

Deep Learning 

(Transformer-based) 

Revolutionized protein 

structure prediction; 

used in neglected 

disease drug pipelines 

COVID-19 Vaccine Design 

(Olawade et al., 2024) 

Genomics / 

Vaccinology 
Machine Learning 

Enabled reverse 

vaccinology and antigen 

candidate identification 
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SARS-CoV-2 Mutation 

Prediction (Lebatteux et al., 

2024) 

Genomics Machine Learning 

Predicted viral 

mutations affecting 

vaccine efficacy; 

informed adaptive 

vaccine strategies 

AI Drug Repurposing (Liu et al., 

2022; Bagabir et al., 2022) 
Drug Discovery 

Molecular Simulation + 

ML 

Prioritised compounds 

for COVID-19 therapy; 

accelerated treatment 

pipelines 

Graph Neural Networks for Lead 

Optimisation (Fu, Chen, 2025) 
Drug Discovery Graph Neural Networks 

Enhanced protein-

ligand interaction 

modeling; improved hit-

to-lead efficiency 

 

When available, relevance was further supported by publication in high-impact journals or 

evidence of translational value such as deployment in clinical or pharmaceutical pipelines. 

 

Challenges and limitations 

AI-driven bioinformatics, while transformative, faces several significant challenges and 

limitations. One of the foremost technical hurdles is data quality, particularly regarding the 

completeness, accuracy, and representativeness of datasets used for training algorithms (Jamarani 

et al., 2024). High-throughput sequencing and clinical datasets often contain noise or missing 

values, which can bias the results and affect reproducibility (Williamson, Prybutok, 2024). Data 

bias is particularly problematic, with underrepresented populations in datasets leading to systemic 

inequalities in algorithm performance, as seen in the healthcare domain where racial, gender, and 

age-related biases are prevalent (Franklin et al., 2024). For example, algorithms trained on 

predominantly White or male datasets may fail to generalize across diverse populations, leading to 

disparities in AI-driven biomedical research and clinical applications (Nazer et al., 2023). 

Furthermore, biases in data collection, such as the overrepresentation of specific demographics or 

diseases, result in skewed predictions that exacerbate existing healthcare inequities (Ferrara, 2023). 

The lack of standardisation across bioinformatics pipelines also complicates the integration of 

diverse data sources, limiting interoperability and consistency in AI outcomes (Brancato et al., 

2024). 

Privacy and security concerns surrounding AI-driven bioinformatics represent another 

major ethical challenge. AI’s reliance on large-scale genomic and clinical datasets raises critical 

issues regarding data storage, sharing, and potential misuse (Khalid et al., 2023). One of the most 

pressing risks is patient re-identification, where AI models can cross-reference genomic datasets 
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with publicly available records to deduce an individual’s identity. Such risks threaten patient 

confidentiality and raise ethical concerns related to informed consent and data ownership (Ford et 

al., 2025). Additionally, AI-driven genetic discrimination has emerged as a growing concern, 

where individuals may face bias in employment, insurance, or healthcare decisions based on AI-

predicted disease risks (Cross et al., 2024). Notably, reports have suggested that certain insurance 

companies have attempted to use genetic data to assess policy risks, highlighting the urgent need 

for stronger legal protections against discriminatory practices (Tiller et al., 2022). 

Regulatory frameworks such as the General Data Protection Regulation (GDPR) and the 

Health Insurance Portability and Accountability Act (HIPAA) aim to address genomic data privacy 

issues. GDPR enforces strict consent requirements, the right to data erasure, and limitations on 

cross-border data transfers, while HIPAA focuses on ensuring the security of protected health 

information (Feretzakis et al., 2024). However, these frameworks face challenges in adapting to 

the unique risks posed by AI-driven genetic analytics and automated decision-making. As AI 

governance policies evolve, ensuring transparency and fairness in genomic data applications 

remains an ongoing challenge for policymakers and researchers (Taddese et al., 2025). Several 

real-world incidents illustrate the vulnerabilities associated with genomic data misuse. In 2019, a 

major data breach at MyHeritage exposed the genetic information of over 92 million users, 

demonstrating the susceptibility of AI-driven genomic databases to cyberattacks (Arshad et al., 

2021). More recently, a credential-stuffing attack on 23andMe in 2023 led to unauthorized access 

to genetic ancestry data, raising concerns over the security of direct-to-consumer genetic testing 

services (Holthouse et al., 2025). Additionally, reports indicate that AI-powered bioinformatics 

tools have been leveraged in state surveillance programs to analyse DNA samples for tracking 

ethnic populations, further complicating the ethical landscape of genomic AI applications (Khalid 

et al., 2023). These cases highlight the urgent need for stricter encryption protocols, enhanced data 

governance policies, and AI-specific regulatory frameworks to prevent data breaches and misuse. 

Beyond privacy, AI ethics debates have intensified around accountability in automated 

decision-making. As AI-driven bioinformatics models increasingly influence biomedical research 

and clinical decision-making, the challenge of assigning responsibility for errors or biases has 

become critical (Radanliev, 2025). The lack of transparency in many AI models, often referred to 

as the “black-box” problem, raises concerns about interpretability, reproducibility, and 

trustworthiness in AI-generated insights (Pedreschi et al., 2019). These issues are particularly 
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pressing in drug discovery, disease risk assessment, and genetic diagnostics, where incorrect 

predictions could lead to flawed medical decisions with significant consequences for patient health. 

Ensuring explainability in AI models used in bioinformatics is essential for fostering trust among 

researchers, clinicians, and patients (Sadeghi et al., 2024). 

AI’s role in biotechnology research also presents challenges in maintaining scientific 

integrity. The automation of hypothesis generation and data interpretation introduces risks of 

scientific misconduct, including AI-generated errors being misrepresented as novel findings (Z. 

Chen et al., 2024). In particular, reliance on AI in bioinformatics research without proper validation 

can lead to the propagation of fabricated or biased results, undermining the credibility of scientific 

discoveries (Wang et al., 2024). As AI becomes more integrated into regulatory and clinical 

decision-making pipelines, it is imperative to establish ethical frameworks that prioritise 

transparency, fairness, and accountability in AI-driven bioinformatics research (Cross et al., 2024). 

Interdisciplinary barriers further hinder the seamless integration of AI into bioinformatics. 

Effective collaboration between biologists, clinicians, and AI experts is essential to bridge 

knowledge gaps and ensure that computational methods align with biological insights (Patel et al., 

2024). However, the disconnect between these disciplines often results in inefficiencies, slowing 

down the translation of AI innovations into practical applications. Addressing these challenges 

requires targeted training programs that equip researchers across disciplines with the necessary 

computational and biological expertise (Wenger et al., 2024). Additionally, fostering 

interdisciplinary communication and aligning research methodologies will be critical to optimising 

the application of AI-driven bioinformatics in real-world contexts (Dwivedi et al., 2023). 

Despite these challenges, AI continues to drive significant advancements in bioinformatics 

and biotechnology. Addressing data bias, enhancing genomic data security, strengthening AI 

accountability, and fostering interdisciplinary collaboration will be key to ensuring the ethical and 

effective deployment of AI-driven bioinformatics solutions. As the field progresses, proactive 

regulatory measures and continuous dialogue between policymakers, researchers, and industry 

stakeholders will be essential to balance innovation with ethical responsibility. 

 

Future prospects 

The future of AI in bioinformatics is marked by groundbreaking advances in emerging technologies 

and transformative approaches to data integration. Among these, quantum computing holds 



17 

 

immense promise in revolutionising the field (Fu, Chen, 2025). Quantum computers, with their 

unparalleled computational power derived from phenomena such as superposition and 

entanglement, are set to redefine our ability to process and analyse complex biological datasets (Lu 

et al., 2023). Unlike classical computers, quantum systems can simultaneously evaluate multiple 

solutions to intricate problems, significantly accelerating tasks such as protein structure prediction 

and drug design (Pei, 2024). These capabilities make quantum computing particularly valuable for 

solving optimisation challenges in molecular docking, genomic data analysis, and systems biology 

modelling (Pal et al., 2023). 

Despite its potential, quantum computing remains in its early stages, with several critical 

limitations preventing its immediate application in bioinformatics. Qubit stability is a major 

challenge, as qubits are highly susceptible to decoherence due to environmental noise, leading to 

frequent errors in computations (Memon et al., 2024). Additionally, quantum error rates remain 

high, requiring sophisticated error-correction techniques that significantly reduce the number of 

usable qubits in practical computations (Zhou et al., 2024). Hardware scalability is another barrier, 

as current quantum processors contain only a few hundred qubits, whereas bioinformatics 

applications demand stable systems with thousands – if not millions – of qubits to handle large-

scale biological data processing efficiently (Gill, Buyya, 2024). While ongoing advancements in 

superconducting qubits, trapped ions, and topological qubits are gradually improving quantum 

hardware, experts predict that fully functional, fault-tolerant quantum computers capable of 

outperforming classical supercomputers in bioinformatics applications may not be widely available 

until 2035–2040 (Aasen et al., 2025). However, hybrid quantum-classical computing approaches, 

which leverage the strengths of both quantum and classical systems, are expected to contribute to 

practical applications in bioinformatics and drug discovery within the next decade (Vakili et al., 

2025). 

In parallel, the trend of integrating multi-omics data is expected to become a cornerstone of 

personalized medicine. By combining genomics, transcriptomics, proteomics, and metabolomics 

data, researchers can create comprehensive biological models that capture the nuances of disease 

mechanisms and individual variability (Tanaka, 2025). AI algorithms, particularly those leveraging 

deep learning, are critical for decoding these complex datasets, enabling precise biomarker 

identification and treatment customisation (Taherdoost, Ghofrani, 2024). Multi-omics integration 

also facilitates the study of epigenetic changes and their impact on health, which is essential for 
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understanding diseases such as cancer and neurodegenerative disorders (C. Chen et al., 2023). As 

these technologies advance, AI-powered platforms will play a pivotal role in identifying 

personalized therapeutic targets and accelerating precision medicine research. 

Personalised health is further supported by advances in wearable technology and remote 

monitoring, which provide real-time data on an individual’s physiological parameters. AI-driven 

bioinformatics platforms can analyse this influx of data to predict health risks and recommend 

interventions, moving healthcare from a reactive to a proactive model (Ponnarengan et al., 2024). 

Moreover, the incorporation of federated learning approaches ensures data privacy by enabling 

decentralized analysis, which is particularly relevant for sensitive health and genomic data (Li et 

al., 2025). These privacy-preserving AI models allow researchers to collaborate on multi-

institutional datasets without compromising patient confidentiality, facilitating secure and scalable 

biomedical discoveries. 

Looking ahead, AI and bioinformatics are poised to drive transformative innovations across 

biotechnology. From revolutionising drug discovery pipelines through predictive modelling to 

facilitating ecological and evolutionary studies, the synergistic integration of these disciplines 

could redefine the boundaries of science (Niazi, 2023). As quantum computing matures over the 

next two decades, its integration with AI-driven bioinformatics is expected to unlock 

unprecedented computational capabilities, accelerating breakthroughs in molecular simulations, 

protein engineering, and genomic medicine (Ali, 2023). In the nearer term, continued progress in 

deep learning, multi-omics data integration, and secure AI models will shape the next generation 

of biotechnology applications (Zhang et al., 2024). Collaborative efforts between computational 

scientists, biologists, and material engineers will be essential in overcoming current technological 

barriers and realising the full potential of these advancements. 

 

Conclusions 

The integration of artificial intelligence and bioinformatics has revolutionized biotechnology by 

enabling the efficient processing and interpretation of biological big data. AI-driven techniques, 

including machine learning, deep learning, and natural language processing, have facilitated 

advancements in precision medicine, drug discovery, synthetic biology, and microbiome research. 

By automating complex analyses and uncovering hidden patterns within massive datasets, AI has 

accelerated biomedical discoveries and personalized healthcare innovations. However, these 
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advancements bring significant ethical and regulatory challenges, particularly regarding genomic 

data privacy, algorithmic bias, and AI accountability. Frameworks such as GDPR, HIPAA, and 

emerging AI governance policies are essential in addressing concerns related to patient data 

protection and AI-driven decision-making transparency, yet ongoing regulatory evolution is 

necessary to keep pace with rapid technological progress. 

Maximising the potential of AI in bioinformatics requires strong interdisciplinary collaboration 

between AI researchers, biologists, clinicians, and policymakers to ensure both scientific rigor and 

ethical integrity. Establishing structured AI-bioinformatics partnerships through academia-industry 

collaborations, open-source AI platforms, and privacy-preserving federated learning models can 

drive innovation while ensuring responsible AI deployment. Looking ahead, integrating AI with 

quantum computing and multi-omics data analysis will unlock new frontiers in genomic medicine, 

biomarker discovery, and evolutionary biology. By addressing current challenges and fostering 

cross-disciplinary cooperation, AI and bioinformatics will continue to transform biotechnology, 

paving the way for groundbreaking scientific advancements and real-world applications in 

healthcare and beyond. 
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Bioinformatyka spotyka AI: transformacja dużych zbiorów danych 

przełomem w biotechnologii 

Streszczenie 

Konwergencja bioinformatyki i sztucznej inteligencji (AI) rewolucjonizuje krajobraz 

biotechnologiczny, przekształcając duże zbiory danych biologicznych w praktyczne spostrzeżenia oraz 

przełomowe innowacje. Bioinformatyka, ze swoją zdolnością do zarządzania i analizowania 

ogromnych zestawów danych z genomiki, proteomiki i biologii systemów, staje przed wyzwaniami 

złożoności oraz wielkiej skali. Zaawansowane techniki AI – uczenie maszynowe, głębokie uczenie i 

przetwarzanie języka naturalnego – zapewniają bezprecedensowe narzędzia do rozszyfrowywania 

wzorców, tworzenia prognoz oraz napędzania automatyzacji. Ta synergia katalizuje niezwykły postęp 

w precyzyjnej medycynie, odkrywaniu leków, edycji genów i biologii syntetycznej, zapowiadając 

nową erę przełomów opartych na dużej ilości danych. W przeglądzie tym badane są podstawy, 

transformacyjne zastosowania i ostatnie przełomy na styku bioinformatyki i AI, a jednocześnie 

podejmowane są wyzwania oraz wizualizowanie przyszłości, w której interdyscyplinarna współpraca 

uwalnia pełny potencjał tego potężnego partnerstwa. 

Słowa kluczowe: sztuczna inteligencja, duże zbiory danych, bioinformatyka, innowacje biotechnologiczne, biologia 

obliczeniowa 
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