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A current threat to public health: hospital acquired infections 
caused by multidrug resistant microorganisms,  

such as Klebsiella pneumoniae

Abstract
This paper presents a bacteria case study involving the isolation of a Klebsiella pneumoniae strain producing 
both KPC and OXA-48 carbapenemases, cultured from clinical material obtained from a patient hospitalised 
with suspected bacterial infection. Microbiological diagnostics included culture on selective media, strain 
identification using MALDI-TOF technology (Autobio), and antimicrobial susceptibility testing by broth 
microdilution with the Thermo Scientific Sensititre automated system. The isolate exhibited resistance 
to a broad spectrum of antibiotics, including carbapenems, cephalosporins, aminoglycosides, and colistin, 
while remaining susceptible only to cefiderocol. This case highlights the urgent need for implementing rational 
antibiotic therapy and coordinated efforts by antimicrobial stewardship teams. The paper also discusses na-
tional and international programs aimed at combating antibiotic resistance and evaluates their effectiveness 
in preserving the efficacy of infection treatment.
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Introduction

The increasing resistance of Enterobacteriaceae to antibiotics, particularly carbapenems, 
has become a major global concern. Of particular importance is Klebsiella pneumoniae 
(Schroeter) Trevisan producing carbapenemases such as KPC (Klebsiella pneumo-
niae carbapenemase) and OXA-48, which significantly limit treatment options for 
healthcare‑associated infections (Queenan, Bush, 2007; Munoz‑Price et al., 2013). 
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These pathogens have been listed among the highest priority organisms by the World 
Health Organization (WHO, 2017).

KPC enzymes belong to class A β‑lactamases and can hydrolyse nearly all β-lactams, 
including carbapenems, making them especially problematic (Bush, Bradford, 2020). 
Meanwhile, OXA-48 carbapenemases, belonging to class D, have a lower hydrolytic 
activity but often coexist with other resistance mechanisms, further complicating 
treatment (Poirel et al., 2012; Evans, Amyes, 2014). The co‑occurrence of KPC and 
OXA-48 in a single isolate leads to strains classified as extensively drug‑resistant (XDR) 
or even pandrug‑resistant (PDR), resistant to all available β-lactams and often to other 
antibiotic classes (Munoz‑Price et al., 2013; ECDC, 2018). Treating infections caused 
by such strains poses a significant challenge. Despite the emergence of new therapeutic 
options, such as ceftazidime/avibactam or cefiderocol, clinical efficacy remains limited 
in some cases (Hayden et al., 2020; Yu et al., 2024). Therefore, rapid identification of 
resistance mechanisms using molecular and phenotypic methods, along with close 
collaboration between microbiologists and clinicians, is essential (Caliskan‑Aydogan, 
Alocilja, 2023; EUCAST, 2025).

Infections caused by multidrug‑resistant K. pneumoniae are associated with high 
mortality rates, prolonged hospital stays, and substantial treatment costs (Laxmi-
narayan et al., 2013; Prestinaci et al., 2015). In this context, not only the development 
of new antimicrobials but also strengthening global infection control strategies, edu-
cational efforts, and antimicrobial stewardship programs in line with the One Health 
approach are crucial (Pulcini et al., 2019; WHO, 2025).

ESKAPE pathogens – a threat to modern medicine
The group of pathogens known as ESKAPE comprises bacteria characterised by par-
ticularly high virulence and the ability to develop multidrug resistance (MDR), ex-
tensive drug resistance (XDR), and in some cases even pan‑drug resistance (PDR). 
These microorganisms are among the main etiological agents of hospital‑acquired 
infections and pose a significant challenge in the treatment of severe infections, par-
ticularly in patients admitted to Intensive Care Units, individuals with compromised 
immunity, and those undergoing invasive medical procedures (Santajit, Indrawattana, 
2016; Tacconelli et al., 2018).

ESKAPE pathogens not only hinder effective treatment due to the limited availa-
bility of active antibiotics but also contribute to prolonged hospitalisation, the need to 
use last‑resort therapies (e.g. colistin), and an increased risk of epidemic outbreaks in 
healthcare settings. The economic burden associated with treating infections caused by 
these pathogens is substantial. According to the World Health Organization (WHO), 
research into novel methods of combating these microorganisms is a global priority 
(WHO, 2023). The name ESKAPE is an acronym created from the Latin names of 
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six key opportunistic pathogens: E – Enterococcus faecium (Orla‑Jensen) Schleifer 
& Kilpper‑Bälz, S – Staphylococcus aureus F.J. Rosenbach, K – Klebsiella pneumoniae, 
A – Acinetobacter baumannii Brisou & Prévot, P – Pseudomonas aeruginosa (Schröter) 
Migula, E – Enterobacter spp. Each of these pathogens makes use of unique resistance 
mechanisms that significantly complicate effective antibiotic therapy: Enterococcus 
faecium – strains resistant to vancomycin (VRE), greatly complicate treatment (Tac-
conelli et al., 2018); Staphylococcus aureus – methicillin resistance (MRSA) makes it 
one of the most dangerous nosocomial pathogens (Otto, 2023); Klebsiella pneumoniae – 
capable of producing extended‑spectrum β-lactamases (ESBL) and carbapenemases 
(KPC), rendering a broad spectrum of β-lactams ineffective (Nordmann et al., 2021); 
Acinetobacter baumannii – shows particularly high resistance to carbapenems and 
many other antibiotic classes (Kubin et al., 2025); Pseudomonas aeruginosa – often 
multidrug‑resistant due to mechanisms such as efflux pumps and enzymatic drug in-
activation (Potron et al., 2013); Enterobacter spp. – resistance mainly associated with 
efflux pump deregulation and the presence of β-lactam hydrolysing enzymes (Hu et al., 
2023). The ability of ESKAPE bacteria to evade antibiotic action through diverse re-
sistance mechanisms makes them one of the greatest challenges of modern infectious 
disease medicine. Their increasing prevalence in hospital environments necessitates 
urgent action in infection control, resistance monitoring, and the development of new 
therapeutic strategies (Tacconelli et al., 2018; WHO, 2023).

The aim of this study is to characterise a Klebsiella pneumoniae strain producing KPC 
and OXA-48 carbapenemases, with a focus on microbiological analysis and antimicro-
bial susceptibility. In addition, it also discusses national and international programs 
combating antibiotic resistance and assesses their effectiveness in treating infections.

Material and methods

This study was conducted as part of routine microbiological diagnostics in a hospital 
located in the Małopolska region, Poland. The analysed specimen was a urine sample 
collected from a hospitalised patient with suspected urinary tract infection. The scheme 
in figure (1) covers the successive stages of microbiological diagnosis.

The sample was cultured on standard microbiological media according to the 
EUCAST (2025) recommendations, including Columbia Agar with 5% sheep blood 
(Thermo Scientific). Incubation was carried out under aerobic conditions at 35 ± 1°C 
for 18–24 hours. Colonies with typical morphology were selected for further analysis. 
Species identification was performed using matrix‑assisted laser desorption/ionisation 
time‑of‑flight mass spectrometry (MALDI-TOF MS, Autobio MS 2000). Protein spec-
tra generated by the instrument were compared against the manufacturer’s reference 
database, which allowed for the definitive identification of the isolate.
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Fig. 1. The stages of the diagnostic procedure that led to the detection of a multidrug‑resistant isolate 
(Created with Biorender 2025)

Antimicrobial susceptibility testing was performed using the automated Thermo 
Scientific Sensititre ARIS System. Minimum inhibitory concentrations (MIC) 
were determined for a broad range of antibiotics in compliance with EUCAST/CLSI 
standards. Phenotypic tests for carbapenemase detection were also performed.

Given the clinical relevance, reference MIC testing for colistin was performed 
using the broth microdilution (BMD) method according to EUCAST and CLSI (2024) 
guidelines. A commercial ComASP Colistin kit (Liofilchem), covering the concen-
tration range of 0.25–16 µg/mL, was applied. Additionally, MIC testing for cefiderocol 
was performed using the gradient diffusion method (E‑test, Liofilchem) on Mueller

‑Hinton agar. The bacterial suspension was prepared to a 0.5 McFarland standard and 
incubated at 35°C for 18–20 hours.

Results

On standard culture media, colonies consistent with Enterobacteriaceae morphology 
were obtained. MALDI-TOF MS analysis (Autobio MS 2000) identified the isolate 
as Klebsiella pneumoniae. Antimicrobial Susceptibility Testing using the Sensititre 
ARIS system demonstrated resistance to most clinically relevant antibiotic classes, 
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including carbapenems, cephalosporins, aminoglycosides, fluoroquinolones, and 
trimethoprim/sulfamethoxazole (Fig. 2).

Fig. 2. Antimicrobial susceptibility testing (AST) of Klebsiella pneumoniae (Schroeter) Trevisan using the 
Sensititre ARIS system, showing extensive drug resistance (XDR); the columns represent: antibiotic 
name, MIC value (minimum inhibitory concentration), interpretation of the result (NI – no interpreta-
tion, OK – growth control valid, R – resistant strain), and additional columns confirming the result or 
consistency with other system criteria (Photo. P. Likus)

According to EUCAST (2025) criteria, the isolate was classified as extensively drug
‑resistant (XDR). Phenotypic carbapenemase testing confirmed the presence of class 
A (KPC) and class D (OXA-48) enzymes.

The reference broth microdilution test (ComASP Colistin) yielded MIC ≥8 µg/mL,  
classifying the isolate as resistant to colistin according to EUCAST criteria. E‑test analy
sis showed a cefiderocol MIC of 0.38 µg/mL. Based on EUCAST (2025) breakpoints, 
the isolate was interpreted as susceptible to cefiderocol (Fig. 3).
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Fig. 3. Demonstration of sensitivity of Klebsiella pneumoniae (Schroeter) Trevisan to cefiderocol (Photo. 
P. Likus)

Discussion

Mechanisms of antimicrobial resistance in bacteria
Among many bacterial defence strategies, four mechanisms are considered key to the 
development of antibiotic resistance: the production of drug‑inactivating enzymes, 
active efflux of drugs from the cell via efflux pumps, modification of drug target sites, 
and reduced membrane permeability (Walsh, 2000; Crofts et al., 2017; Belay et al., 
2024) – Fig. 4. In recent years, increased attention has been paid to biofilm formation – 
protective structures that hinder drug penetration and promote the persistence and 
horizontal transfer of resistance genes (Belay et al., 2024; Costerton et al., 1999).

Fig. 4. The main mechanisms of antibiotic resistance found in bacteria (Created with Biorender 2025)
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The production of antibiotic‑inactivating enzymes is one of the most common 
resistance mechanisms. Bacteria synthesise diverse enzymes that chemically degrade 
or modify drug molecules, rendering them inactive (Gabibov et al., 2020; Belay et al., 
2024). This group includes β-lactamases, which hydrolyse the β-lactam ring found in 
penicillins, cephalosporins (including 3rd and 4th generations), and monobactams such 
as aztreonam (Fair, Tor, 2014; Blair et al., 2015). Similar mechanisms apply to other 
drug classes – e.g., chloramphenicol acetyltransferases, aminoglycoside‑modifying 
enzymes, and phosphotransferases that add chemical groups to the antibiotic structure, 
preventing its activity (Blair et al., 2015; Mehta et al., 2015).

Reduced membrane permeability, especially in Gram‑negative bacteria, is another 
defence strategy. Limiting porin expression reduces antibiotic penetration, lowering 
their efficacy (Crofts et al., 2017). Efflux pumps belonging to the RND, MFS, ABC, or 
MATE families actively expel antibiotics from the cell, preventing them from reaching 
therapeutic concentrations. High expression of these systems is responsible for multidrug 
resistance. Structural changes at drug target sites – such as mutations in DNA gyrase or 
topoisomerase IV (relevant for fluoroquinolones) or rRNA methylation that blocks macro
lide binding – lead to reduced antibiotic affinity and treatment efficacy (Blair et al., 2015).

Biofilm formation is a complex mechanism that enhances bacterial resistance to 
antibiotics and the immune system while promoting the persistence of so‑called per-
sister cells – metabolically inactive cells that can survive treatment (Belay et al., 2024, 
Costerton et al., 1999). Biofilms also facilitate horizontal gene transfer (Gillings, 2017).

In conclusion, bacterial resistance to antibiotics arises from diverse and often over-
lapping molecular mechanisms. Thorough understanding and monitoring of these 
processes are essential for developing new drugs and treatment strategies amid the 
growing antibiotic resistance crisis (Tacconelli et al., 2018; Belay et al., 2024).

Resistance mechanisms of KPC (Class A) and OXA-48 (Class D)
Class A and D carbapenemases produced by Gram‑negative bacteria are of critical 
clinical importance due to their ability to hydrolyse carbapenems and confer multidrug 
resistance (MDR), significantly limiting therapeutic options. According to the Ambler 
classification, Klebsiella pneumoniae carbapenemase (KPC) belongs to class A, while 
OXA-48 is categorised under class D (Bush, Bradford, 2020).

KPC – Class A Carbapenemases
KPC enzymes are class A serine β-lactamases capable of hydrolysing nearly all β-lactam 
antibiotics, including penicillins, cephalosporins, monobactams, and carbapenems 
(Queenan, Bush, 2007; Nordmann et al., 2011). The resistance mechanism involves 
serine‑catalysed hydrolysis of the β-lactam ring, leading to antibiotic inactivation 
(Queenan, Bush, 2007).
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The blaKPC gene, most commonly encoding the KPC-2 and KPC-3 variants, is typi
cally located on plasmids with high interspecies transfer potential, which facilitates 
the rapid spread of resistance in hospital environments (Munoz‑Price et al., 2013). 
KPC‑producing strains often exhibit resistance, not only to β-lactams, but also to other 
antibiotic classes such as fluoroquinolones, aminoglycosides, and even colistin, further 
complicating treatment (van Duin, Doi, 2017).

OXA-48 – Class D Carbapenemases
OXA-48 carbapenemases belong to class D β-lactamases and display a distinctive 
substrate profile: they have limited hydrolytic activity against cephalosporins but are 
active against penicillins and carbapenems (Poirel et al., 2012; Evans, Amyes, 2014). 
Their mechanism of resistance also involves serine hydrolase activity; however, their 
catalytic efficiency (kcat) against carbapenems is lower than that of class A or B enzymes, 
making phenotypic detection more difficult (Evans, Amyes, 2014).

The blaOXA-48 gene is usually located on mobile plasmids frequently associated 
with transposons (e.g., Tn1999), promoting its dissemination, particularly among 
Enterobacteriaceae (Potron et al., 2013). Many OXA-48-producing strains remain 
susceptible to third‑generation cephalosporins, which may lead to false‑negative results 
in standard phenotypic assays if not complemented by genotypic methods (Tzouve- 
lekis et al., 2012).

Fig. 5. Classification of β-lactamase enzymes according to Ambler (Created with Biorender 2025)

According to Ambler’s classification, β-lactamases are divided into four classes (A, B, 
C and D) based on their amino acid sequence and mechanism of action. Classes A, C 
and D use serine as a catalyst, whereas class B (metallo-β-lactamases) requires zinc 
ions. The figure (5) illustrates examples of enzymes that belong to specific classes (Bush, 
Bradford, 2020).
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Epidemiology of multidrug-resistant Enterobacterales infections in Europe
Infections caused by carbapenem‑resistant Enterobacterales, including Klebsiella 
pneumoniae, remain a critical issue in European Union and European Economic 
Area countries. The latest assessment by the European Centre for Disease Preven-
tion and Control (ECDC, 2025) indicates a worsening epidemiological situation and 
an increase in carbapenem‑resistant Enterobacterales infections in several Euro
pean countries.

In Poland, K. pneumoniae strains producing KPC and OXA-48 carbapenemases 
pose a particular threat and are spreading across multiple hospitals. The diversity of 
resistance mechanisms and the capacity to acquire additional genetic determinants 
increase the risk of difficult‑to‑treat infections (Kot et al., 2025). Whole‑genome se-
quencing (WGS) analysis of 934 carbapenemase‑producing Enterobacterales isolates 
(VIM/IMP) revealed a high prevalence of Enterobacter hormaechei Jordan and several 
high‑risk clones (ST90, ST89, ST121), responsible for multifocal and multiregional 
infection outbreaks. WGS enabled precise identification of resistance genes and their 
association with various plasmids and integrons (Izdebski et al., 2023).

The presented study described a K. pneumoniae strain harboring both KPC and 
OXA-48 carbapenemases, which was susceptible only to cefiderocol. Similar obser-
vations have been reported by other authors, highlighting the crucial role of cefi-
derocol as a last‑line therapy against multidrug‑resistant Gram‑negative infections. 
Oueslati et al. (2022) assessed the in vitro activity of cefiderocol against carbapenem

‑resistant K. pneumoniae, Escherichia coli, Enterobacter cloacae Jordan, Pseudomonas 
aeruginosa, and Acinetobacter baumannii. Minimal inhibitory concentrations (MIC) 
were determined using broth microdilution in iron‑adjusted Mueller‑Hinton broth 
and interpreted according to EUCAST and CLSI criteria. Results confirmed the 
superior efficacy of cefiderocol among the tested antibiotics, supporting its role as 
a last‑resort agent.

In Poland, cefiderocol also demonstrated high activity against MDR and XDR 
strains. Zalas‑Więcek et al. (2022) applied disk diffusion and MIC test strip methods, 
interpreting results based on EUCAST guidelines, and concluded that cefiderocol rep-
resented a new therapeutic option for E. coli. Similarly, Tarski et al. (2024) documented 
cefiderocol’s effectiveness in challenging clinical cases where other antibiotics failed. 
At the European level, a study from Lithuania in 2023 identified 106 K. pneumoniae 
OXA-48 isolates belonging to high‑risk clones ST45, ST392, and ST395. WGS confirmed 
that these strains were responsible for multifocal outbreaks in multiple hospitals and 
regions (Greičius et al., 2024). These findings underscore the necessity for systematic 
epidemiological surveillance and rapid identification of high‑risk clones.

The resistance mechanisms observed in the studied K. pneumoniae strain (KPC 
and OXA-48) are consistent with experimental findings, demonstrating that these 
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enzymes confer resistance to most β-lactam antibiotics while cefiderocol remains ef-
fective, thereby confirming its role as a last‑line therapy for multidrug‑resistant Gram

‑negative infections (Oueslati et al., 2022; Zalas‑Więcek et al., 2022; Tarski et al., 2024).

Diagnostics, treatment, and prevention of carbapenemase-producing organisms
In recent years, diagnostics for carbapenemase‑producing organisms (CPOs) have 
advanced significantly with the introduction of rapid molecular techniques such as 
PCR and LAMP, as well as immunochromatographic assays. These tools improve the 
detection of key enzymes like KPC and OXA-48, even when phenotypic expression is 
low (Nordmann et al., 2012; Dortet et al., 2014). Despite these improvements, identifying 
OXA-48 producers remains challenging, particularly in strains with minimal enzyme 
activity. To enhance diagnostic sensitivity and specificity, a combination of phenotypic 
and genotypic methods is recommended (Nordmann et al., 2012).

As carbapenem resistance increases and the effectiveness of traditional treatments 
declines, new β-lactamase inhibitors have expanded therapeutic options. Ceftazidime/
avibactam, active against class A and C enzymes and partially effective against class D 
(including many KPC- and OXA-48-producers), has become a key agent (Yu et al., 
2024). Other novel combinations – such as meropenem/vaborbactam and imipenem/
relebactam – target class A carbapenemases and some class D enzymes (Hayden et al., 
2020). Cefiderocol, a siderophore cephalosporin that exploits iron‑uptake systems, of-
fers broad activity against multiple carbapenemase types, including KPC and OXA-48 
(Ito et al., 2017). Despite these advances, last‑resort antibiotics like colistin and fosfomy-
cin are still used in severe cases, although rising resistance and toxicity concerns limit 
their utility (Falagas, Kasiakou, 2024). Furthermore, emerging mutations in blaKPC and 
blaOXA-48 genes threaten the efficacy of newer inhibitors, including ceftazidime/avibac-
tam, underscoring the need for continuous surveillance and research (ECDC, 2018).

Class A (KPC) and class D (OXA-48) carbapenemases remain the dominant re-
sistance mechanisms among Gram‑negative bacteria and are frequently associated 
with multidrug resistance. While modern diagnostics and agents like cefiderocol offer 
critical therapeutic tools, the rapid evolution of resistance highlights the importance 
of sustained monitoring and innovation (Koenig, Kuti, 2024).

Excessive antibiotic use in both human and veterinary medicine continues to drive 
antimicrobial resistance. Gram‑negative bacteria, in particular, increasingly produce 
ESBLs and carbapenemases, leading to resistance against cephalosporins and other 
β-lactams (Prestinaci et al., 2015; Laxminarayan et al., 2013). This contributes to pro-
longed hospital stays and higher mortality rates in infections caused by multidrug

‑resistant organisms (Levy, Marshall, 2004). Consequently, accurate microbiological 
diagnostics, including MIC testing in accordance with EUCAST guidelines, are essential 
to guide appropriate therapy (WHO, 2020).
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In response to the global threat of antimicrobial resistance (AMR), international 
efforts such as the WHO’s Global Action Plan on AMR and the work of the Global 
Leaders Group promote a One Health approach and multisectoral coordination (WHO, 
2025; Laxminarayan et al., 2020). In Poland, national efforts are led by the National 
Reference Centre for Antimicrobial Susceptibility (KORLD) and supported by the 
National Programme for Antibiotic Protection (NPOA). These initiatives include the 
development of training programs and support for antimicrobial stewardship teams 
in healthcare institutions.

Antimicrobial Stewardship Programs (ASP) have demonstrated clear clinical and 
epidemiological benefits, including reduced inappropriate antibiotic use, shorter hospi-
tal stays, and fewer infections caused by multidrug‑resistant organisms such as MRSA, 
KPC, and ESBL producers (Baur et al., 2017). Their success depends on structured col-
laboration among healthcare professionals, access to rapid diagnostics, and continuous 
monitoring of local resistance trends (Huttner et al., 2014). WHO‑led initiatives such 
as the Antimicrobial Stewardship Coaching Programme, launched in 2025, are support 
hospitals across Central and Eastern Europe in implementing these practices. In Poland, 
AMS teams are being developed in line with NPOA recommendations and national 
infection control strategies, with emphasis on staff education, therapeutic audits, and 
adherence to EUCAST and national guidelines (Pulcini et al., 2019).

Conclusions

The case of the described Klebsiella pneumoniae strain producing both KPC and OXA-48 
carbapenemases highlights the scale of the threat posed by the increasing resistance of 
Gram‑negative bacteria to available antimicrobial agents. High‑quality microbiological 
diagnostics – including accurate MIC determination and identification of resistance 
mechanisms – are essential for the implementation of targeted therapy. In the context 
of limited therapeutic options, antimicrobial stewardship programs and coordinated 
national and global efforts are of paramount importance in reducing the selection of 
resistant strains. An integrated approach – based on the One Health principle – remains 
the only effective strategy in the fight against the growing problem of antimicrobial 
resistance.
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Aktualne zagrożenie dla zdrowia publicznego:  
zakażenia szpitalne wywołane przez drobnoustroje oporne na wiele leków,  

takie jak Klebsiella pneumoniae
Streszczenie

W niniejszej pracy opisano przykład izolacji szczepu Klebsiella pneumoniae wytwarzającego karbapenemazy 
typu KPC i OXA-48, opornego na większość stosowanych antybiotyków. Diagnostyka obejmowała posiewy 
na podłożach selektywnych, identyfikację metodą MALDI-TOF oraz oznaczenie lekowrażliwości przy użyciu 
automatycznego systemu mikrorozcieńczeń. Szczep wykazywał oporność na karbapenemy, aminoglikozydy 
i kolistynę, wykazując wrażliwość jedynie na cefiderokol – antybiotyk ostatniej szansy. Opisany przypadek 
ilustruje kliniczne wyzwania związane z zakażeniami wywoływanymi przez bakterie wielolekooporne.
Równocześnie zwraca uwagę narastające znaczenie szczepów łączących różne mechanizmy oporności, 
m.in. produkcję β-laktamaz typu ESBL, karbapenemaz klasy A, B i D oraz mechanizmy zmniejszonej 
przepuszczalności błon i aktywnego wypompowywania leku (efflux). Zakażenia tymi patogenami nie tylko 
ograniczają możliwości terapeutyczne, lecz także generują poważne konsekwencje epidemiologiczne i ekono-
miczne. Podkreśla to potrzebę zintegrowanych działań diagnostycznych, terapeutycznych i profilaktycznych 
w ramach programów racjonalnej antybiotykoterapii oraz aktywnego nadzoru mikrobiologicznego.
Słowa kluczowe: Enterobacteriaceae, epidemiologia, karbapenemazy OXA-48
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