Biodiversity on one of the post-mining heaps in the Silesian province (Poland)
DOI:
https://doi.org/10.24917/25438832.8.6Keywords:
heavy metals, soil fauna, waste heapsAbstract
Waste generated by the hard coal mining and processing industries pose significant environmental hazard through, among other things, impacting water and soil. The process that is particularly dangerous is trace element accumulation. Excessive quantities of heavy metals pose grave threat to plants, humans and soil organisms. The purpose of the studies was to determine the content of heavy metals, such as Pb, Cd, Ni, Zn and Cu in the material collected at various distances from the peak of the mining waste heap in Czerwionka-Leszczyny and estimate their impact on quantities and diversity of soil organisms in those sites. Studies have shown a high degree of correlation between the distance from the top of the heap and the density and diversity of pedofauna. The highest abundance and diversity of soil invertebrates was observed at site 5 (1km from the post-mining heap). The content of heavy metals in the tested soils ranged for Cd from 1.18 to 1.54 mg/kg of dry mass (DM), for Cu 20.82–66.20 mg/kg DM, for Zn from 97.79 to 222 mg/kg DM, for Pb 27.20–50.18 mg/kg DM and for Ni from 5.55 mg/kg DM to 56.23 mg/kg DM. The contents of the analysed metals did not exceed their permitted levels in soil and earth as defined by the Regulation of the Minister of Environment of 2016 in the matter of the procedure for conducting the assessment of soil surface contamination. The obtained results indicate that the content of copper and nickel in the dried grass was significantly higher than in the soil.
Downloads
Metrics
References
Ali, H., Khan, E., Ilahi, I. (2019). Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, Article ID: 6730305. https://doi.org/10.1155/2019/6730305
Bian, Z., Dong, J., Lei, S, Leng, H., Mu, S., Wang, H. (2009). The impact of disposal and treatment of coal mining wastes on environment and farmland. Environmental Geology, 58(3), 625–634. https://doi.org/10.1007/s00254-008-1537-0
Brauns A. (1954). Terricole Dipterenlarven. Musterschmidt (Göttingen) [in German]
Brauns A. (1975). Owady leśne. PWRiL, Warszawa [in Polish]
Carlson, C.L., Adriano, D.C. (1993). Environmental impacts of coal combustion residues. Journal of Environmental Quality, 22, 227–247. https://doi.org/10.2134/jeq1993.00472425002200020002x
Fabiańska., M., Ciesielczuk, J., Nádudvari, Á., Misz-kennan, M., Kowalski, A. Kruszewski, Ł. (2018). Environmental influence of gaseous emissions from self-heating coal waste dumps in Silesia, Poland. Environmental Geochemistry and Health, 1–27. https://doi.org/10.1007/s10653-018-0153-5
Frouz, J., Keplin, B., Pižl, V., Tajovský, K., Starý, J., Lukešová, A., Nováková, A., Balı́k, V., Háněl, L., Materna, J., Düker, C., Chalupský, J., Rusek, J., Heinkele, T. (2001). Soil biota and upper soil layers development in two contrasting post-mining chronosequences. Ecological Engineering, 17, 2–3, 275–284. https://doi.org/10.1016/S0925-8574(00)00144-0
Frouz, J., Nováková, A. (2005). Development of soil microbial properties in topsoil layer during spontaneous succession in heaps after brown coal mining in relation to humus microstructure development. Geoderma, 129(1–2), 54–64. https://doi.org/10.1016/j.geoderma.2004.12.033
Frouz, J., Elhottová, D., Pižl, V., Tajovský, K., Šourková, M., Picek, T., Malý , S. (2007). The effect of litter quality and soil faunal composition on organic matter dynamics in post-mining soil: a laboratory study. Applied Soil Ecology, 37(1–2), 72–80. https://doi.org/10.1016/j.apsoil.2007.04.001
Frouz, J., Livečková, M., Albrechtová, J., Chroňáková, A., Cajthaml, T., Pižl, V., Háněl, L., Starý, J., Baldrian, P., Lhotáková, Z., Šimáčková, H., Cepáková, Š. (2013). Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. Forest Ecology and Management, 309, 87–95. https://doi.org/10.1016/j.foreco.2013.02.013
Galos, K., Szlugaj, J. (2014). Management of hard coal mining and processing wastes in Poland. Mineral Resources Management, 30, 4, 51–63. https://doi.org/10.2478/gospo-2014-0039
Gawor, Ł., Warcholik, W., Dolnicki, P. (2014). Possibilities of exploitation of secondary deposits (post mining dumping grounds) as an example of changes in extractive industry. In: Zioło Z., Rachwał T. (eds) Prace Komisji Geografii Przemysłu Polskiego Towarzystwa Geograficznego, 27, 256–266. [In Polish]
Góralczyk, S., Baic, I. (2009). Hard coal extractive waste and possibilities of their usage. Energy Policy Journal, 12(2), 145–157.
Górny, M., Grǖm, L. (1981). Metody stosowane w zoologii gleby. PWN, Warszawa [in Polish]
GUS (2022). Ochrona Środowiska w 2022. Warszawa: Główny Urząd Statystyczny (GUS) [in Polish]
https://stat.gov.pl› ochrona_srodowiska_w_2022_r [access 30.06.2023]
Jasiewicz, C., Antonkiewicz, J. (2004). An assessment of copper and nickel contamination of soils and barley in the north-eastern part of the Silesia province. Soil Science Annual, 55(4), 31–37. [In Polish]
Józefowska, A., Pietrzykowski, M., Woś, B., Cajthaml, T., Frouz, J. (2017). Relationships between respiration, chemical and microbial properties of afforested mine soils with different soil texture and tree species: Does the time of incubation matter. European Journal of Soil Biology, 80, 102–109. https://doi.org/10.1016/j.ejsobi.2017.05.004
Józefowska, A., Woś, B., Pietrzykowski, M., Schlaghamerský, J. (2020). Colonisation by enchytraeids as a suitable indicator of successful biological reclamation of post-mining technosols using alders. Applied Soil Ecology, 145, 103300, https://doi.org/10.1016/j.apsoil.2019.06.003
Kabata-Pendias, A., Piotrowska, M., Motowicka-Terelak, T., Maliszewska-Kordybach, B., Filipiak, K., Krakowiak, A., Pietruch, C. (1995). The fundamental analysis of chemical contamination of soils. Heavy metals, sulfur and PAHs. Biblioteka Monitoringu Środowiska, Warszawa [in Polish].
Kabata-Pendias, A., Pendias, H. (1999). Biogeochemistry of trace elements. PWN, Warszawa [In Polish].
Kasprzyk, P. (2009). Directions of reclamation in surface mining. Problemy Ekologii Krajobrazu, 24, 7–15. https://agro.icm.edu.pl/agro/element/bwmeta1.element.dl-catalog-3d7f5244-e36b-4956-9cef-0f352d0e6016. [in Polish]
Konior, J. (2006). The possibilities of limitation of unfavorable influence of mining dumping ground on the surrounding environment. Zeszyty Naukowe Politechniki Śląskiej. Górnictwo, 271, 71–82. [In Polish]
Krzaklewski, W. (2001). Rekultywacja obszarów pogórniczych i poprzemysłowych. Aura, 9, 20–23. [in Polish]
Krzaklewski, W., Pietrzykowski, M. (2002). Selected physico-chemical properties of zinc and lead ore tailings
and their biological stabilisation. Water, Air, and Soil Pollution, 141, 125–141. https://doi.org/10.1023/A:1021302725532
Likus-Cieślik, J., Józefowska, A., Frouz, J., Vicena, J., Pietrzykowski M. (2023). Relationships between soil properties, vegetation and soil biota in extremely sulfurized mine soils. Ecological Engineering, 186, 106836. https://doi.org/10.1016/j.ecoleng.2022.106836
Łączny, J.M., Baran, J., Ryszko, A. (2012). Development and implementation of innovative environmental technologies used on coal waste dumps. Theoretical and methodological basis and practical examples. Publisher ITEPIB, Radom, Poland [In Polish].
Madej, G. (2002). Soil Mesostigmatid Mites (Arachnida, Acari) as a good indicator of succession stages on dumps. Kosmos, 51, 2, 205–211. [In Polish].
Manu, M., Bancila, R.i., Iordache, V., Bodescu, F., Onete, M. (2017). Impact assessment of heavy metal pollution on soil mite communities (Acari: Mesostigmata) Fromzlatna Depression – Transylvania. Process Safety and Environmental Protection, 108, 121–134. https://doi.org/10.1016/j.psep.2016.06.011
Map of villages: https://docplayer.pl/109399706-Lokalny-program-rewitalizacji-dla-gminy-i-miasta-czerwionka-leszczyny-do-2022-roku.html [access 30.06.2023].
Murphy, P.W. (1962). Extraction methods for soil animals. 1. Dynamic methods with particular reference to funnel processes. In: Progress in Soil Zoology (MURPHY PW Ed.), 75–114, London: Butterworth Orthophotomap of a dumpin Czerwionka-Leszczyny (https://sip.gison.pl/czerwionkaleszczyny) [access 20.07.2023].
Pikoń, K., Bugla, J. (2007). Emission from restored coal dumping grounds. Archives of Journal of Waste Management and Environmental Protection, 6, 55–70. [In Polish].
Pietrzykowski, M., Socha, J., van Doorn, N.S. (2014) . Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Science of the Total Environment, 470–471, 501–510. https://doi.org/10.1016/j.scitotenv.2013.10.008
Pietrzykowski, M., Krzaklewski, W., Likus, J., Woś, B. (2015). Assessment of english oak (Quercus robur L.) growth in varied soil-substrate conditionsof reclaimed Piaseczno sulfur mine dump. Folia Forestalia Polonica, 57(1), 28–32. https://doi.org/10.1515/ffp-2015-0004
Pławilszczikow N. (1972). Klucz do oznaczania owadów. PWRiL, Warszawa [In Polish].
Radosz, Ł., Ryś, K., Chmura, D., Hutniczak, A., Woźniak G. (2019). The role of soil fauna in the diversity of vegetation on the carboniferous waste dump. Ecological Engineering, 20(4), 21–28. https://doi.org/10.12912/23920629/113635
Regulation of the Minister of the Environment of 1 September 2016 on the method of conductingan assessment of the surface pollution (Dz.U.2016.1395) [In Polish].
Richards, B.N. (1974). Introduction to the Soil Ecosystem. Longman Group Limited, London.
Różański, Z. (2019). Management of mining waste and the areas of its storage – environmental aspects. Mineral Resources Management, 35(3), 119–142. https://doi.org/10.24425/gsm.2019.128525
Siwek, M. (2008). Plants in postindustrial site, contaminated with heavy metals. Part II. Mechanisms of detoxification and strategies of plant adaptation to heavy metals. Botanical News, 52(3/4), 7–23.
Sonter, L.J.,Ali, S.H., Watson, J.E.M. (2018). Mining and biodiversity: key issues and research needs in conservation science. Proceedings of the Royal Society B: Biological Sciences, 285, 1892. https://doi.org/10.1098/rspb.2018.1926
Stefaniak, S., Twardowska, I. (2006). Chemical transformations in mining waste exemplified in the Czerwionka – Leszczyny dump. Górnictwo i Geologia, 1(3), 89–100. [In Polish]
Sułkowski, J., Drenda, J., Różański, Z., Wrona, P. (2008). Noticed in mining areas, environmental hazard connected with outflow of gases from abandoned mines and with spontaneous ignition of coal waste dumps. Gospodarka Surowcami Mineralnymi (Mineral Resources Management), 24(3/1), 319–334.
Suponik, T., Blanko, M. (2014). Removal of heavy metals from groundwater affected by acid mine drainage. Physicochemical Problems of Mineral Processing, 50(1), 359–372. https://doi.org/10.5277/ppmp140130
Surovka, D., Pertile, E., Dombek, V., Vastly, M., Leher, V. (2017). Monitoring of thermal and gas activities in mining dump Hedvika, Czech Republic. IOP Conference Series: Earth and Environmental Science, IOP Publishing, 92(1), 012060. https://doi.org/10.1088/1755-1315/92/1/012060
Szczepańska, J., Twardowska, I. (1999). Distribution and environmental impact of coal - mining wastes in Upper Silesia, Poland. Environmental Geology, 38(3), 249–258. https://doi.org/10.1007/s002540050422
Terelak, H., Tujka, A., Motowicka-Terelak, T. (2001). Trace element content (Cd, Cu, Ni, Pb, Zn) in farm-land soils in Poland. Archiwes of Environmental Protection, 27(4), 159–174.
Tiwary, R.K. (2001). Environmental impact of coal mining on water regime and its management. Water, Air and Soil Pollution, 132(1–2), 185–199. https://doi.org/10.1023/A:1012083519667
Zając, E., Zarzycki, J. (2013). The effect of thermal activity of colliery waste heap on vegetation development. Annual Set the Environment Protection, 15, 1862–1880.