A review of significance of allelopathy in anticipating negative climate change effects

Authors

  • Peiman Zandi Internatonsl Faculty of Applied Technology, Yibin University, Yibin 644000, China
  • Aminu Darma Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, China
  • Qian Li The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of Negev, Israel
  • Xue Zhou Internatonsl Faculty of Applied Technology, Yibin University, Yibin 644000, China
  • Wang Yaosheng Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, China
  • Ewald Schnug Institute for Plant Biology, Department of Life Sciences, Technical University of Braunschweig, 38106 Braunschweig, Germany

DOI:

https://doi.org/10.24917/25438832.8.12

Keywords:

allelochemicals, climate change, ecosystem resilience, invasive species, sustainable land

Abstract

Allelopathy refers to the chemical interactions between plants, where certain species release chemicals which affect the growth, development and survival of neighboring plants. These chemicals, known as allelochemicals, can have also positive or negative side effects on ecosystems, which have potential to interact with climate change. However, the common  understanding of the ecological implications of allelopathy and its impact on plant community dynamics, species composition, and biodiversity is limited, with scarce information available on how allelochemicals are produced, released, and affect neighboring plants. The significance of allelopathy for climate change effects on agriculture relates to its interaction with carbon sequestration, nutrient cycling, and soil health and last but not least with greenhouse gas emissions. This review highlights the importance of allelopathy as a vital ecological process for sustainable land management and ecosystem resilience in the face of climate-related challenges.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abbass, K., Qasim, M.Z., Song, H. Murshed, M., Mahmood, H., Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29, 42539–42559. https://doi.org/10.1007/s11356-022-19718-6

Abd-ElGawad, A.M., Assaeed, A.M., Al-Rowaily, S.L., Alshahri, M.S., Bonanomi, G., Elshamy, A.I. (2023). Influence of season and habitat on the essential oils composition, allelopathy, and antioxidant activities of Artemisia monosperma Delile. Separations, 10(4), 263. https://doi.org/10.3390/separations10040263

Afzal, M.R., Naz, M., Ashraf, W., Du, D. (2023). The legacy of plant invasion: Impacts on soil nitrification and management implications. Plants, 12, 2980. https://doi.org/10.3390/plants12162980

Ain, Q., Mushtaq, W., Shadab, M., Shadab, M., Siddiqui, M.B. (2023). Allelopathy: An alternative tool for sustainable agriculture. Physiology and Molecular Biology of Plants, 29, 495–511. https://doi.org/10.1007/s12298-023-01305-9

Alldred, M., Baines, S.B., Findlay, S. (2016). Effects of invasive-plant management on nitrogen-removal services in freshwater tidal marshes. PLoS ONE, 11(2), e0149813. https://doi.org/10.1371/journal.pone.0149813

Allemann, I., Cawood, M.E., Allemann, J. (201)7. Influence of altered temperatures on allelopathic properties of Amaranthus cruentus L. Acta Agriculturae Slovenica, 109(2), 465–471. https://doi.org/10.14720/aas.2017.109.2.29

Altieri, M.A., Nicholls, C.I., Henao, A., Lana, M.A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35, 869–890. https://doi.org/10.1007/s13593-015-0285-2

Anaya, A.L. (1999). Allelopathy as a tool in the management of biotic resources in agroecosystems. Critical Review in Plant Science, 18, 697–739. https://doi.org/10.1080/07352689991309450

Appiah, K.S., Omari, R.A., Onwona-Agyeman, S., Amoatey C.A., Ofosu-Anim, J., Smaoui, A., Arfa, A.B., Suzuki, Y., Oikawa, Y., Okazaki, S., Katsura, K., Isoda, H., Kawada, K., Fujii, Y. (2022). Seasonal changes in the plant growth-inhibitory effects of rosemary leaves on Lettuce Seedlings. Plants (Basel), 11(5), 673. https://doi.org/10.3390/plants11050673.

Applebee, T.A., Gibson, D.J., Newman, J.A. (1999). Elevated atmospheric carbon dioxide alters the effects of allelochemicals produced by tall fescue on alfalfa seedlings. Transactions of the Illinois State Academy of Science, 92(1-2), 23–31.

Arthur, M.A., Bray, S.R., Kuchle, C.R., McEwan, R.W. (2012). The influence of the invasive shrub, Lonicera maackii, on leaf decomposition and microbial community dynamics. Plant Ecology, 213, 1571–1582. https://doi.org/10.1007/s11258-012-0112-7

Bae, J., Byun, C., Ahn, Y.G., Choi, J.H., Lee, D., Kang, H. (2019). Effect of elevated atmospheric carbon dioxide on the allelopathic potential of common ragweed. Journal of Ecology and Environment, 43, 21. https://doi.org/10.1186/s41610-019-0116-5

Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R. M., Vivanco, J.M. (2004). Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 305(5688), 1258–1260. https://doi.org/10.1126/science.1083245

Barabasz-Krasny, B., Zandi, P., Puła, J., Schnug, E., Danel, A., Stachurska-Swakoń, A. (2023). Allelopathy: A natural constraining factor in the productivity of managed ecosystems. In: Boal, N., Kirkham, M.B., (eds.), Soil Constraints and Productivity, CRC Press, Australia. https://doi.org/10.1201/9781003093565

Barker, D.H., Vanier, C., Naumburg, E., Charlet, T.N., Nielsen, K.M., Newingham, B.A., Smith, S.D. (2006). Enhanced monsoon precipitation and nitrogen deposition affect leaf traits and photosynthesis differently in spring and summer in the desert shrub Larrea tridentata. New Phytologist, 169, 799–808. https://doi.org/10.1111/j.1469-8137.2006.01628.x

Bazin, A., Goverde, M., Erhardt, A., Shykoff, J.A. (2002). Influence of atmospheric carbon dioxide enrichment on induced response and growth compensation after herbivore damage in Lotus corniculatus. Ecological Entomology, 27(3), 271–278. https://doi.org/10.1046/j.1365-2311.2002.00409.x

Bertrand, R., Lenoir, J., Piedallu, C., Riofrío-Dillon, G., de Ruffray, P., Vidal, C. Pierrat, J.C., Gégout, J.C. (2011). Changes in plant community composition lag behind climate warming in lowland forests. Nature, 479, 517–520. https://doi.org/10.1038/nature10548

Bhowmik, P. (2022). Bioavailability of allelochemicals in soil environment under climate change: Challenges and perspectives. Indian Journal of Weed Science, 54(2), 389–396. http://dx.doi.org/10.5958/0974-8164.2022.00070.3

Bieberich, J., Drachsler, M., Heinrichs, J., Müller, S., Feldhaar, H. (2018). Species- and developmental stage-specific effects of allelopathy and competition of invasive Impatiens glandulifera on cooccurring plants. PLoS ONE, 13(11), e0205843. https://doi.org/10.1371/journal.pone.0205843

Bomanowska, A., Adamowski, W., Kirpluk, I., Otręba, A., Rewicz, A. (2019). Invasive alien plants in Polish national parks-threats to species diversity. PeerJ, 7, e8034. https://doi.org/10.7717/peerj.8034.

Broeckling, C.D., Broz, A.K., Bergelson, J., Manter, D.K., Vivanco, J.M. (2008). Root exudates regulate soil fungal comunity composition and diversity. Applied and Environmental Microbiology, 74(3), 738–744. https://doi.org/10.1128/AEM.02188-07

Bustamante, M.M., Silva, J.S., Scariot, A., Sampaio, A.B., Mascia, D.L., Garcia, E., Sano, E., Fernandes, G.W., Durigan, G., Roitman, I., Figueiredo, I. (2019). Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil. Mitigation and Adaptation Strategies for Global Change, 24, 1249–1270. https://doi.org/10.1007/s11027-018-9837-5

Callaway, R., Aschehoug, E. (2000). Invasive plants versus their new and old neighbours: A mechanism for exotic invasion. Science, 290(5491), 521–523. https://doi.org/10.1126/science.290.5491.521

Callaway, R.M., Ridenour, W.M. (2004). Novel weapons: Invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2(8), 436–43. https://doi.org/10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2

Canton, M.C., Holguin, F.O., Gard, C.C., Boeing, W.J. (2021). Allelochemical effect of gramine under temperature stress and impact on fat transesterification. Chemical Ecology, 37(5), 481–492. https://doi.org/10.1080/02757540.2021.1888934

Cao, S., Chen, L., Shankman, D., Wang, C., Wang, X., Zhang, H. (2011). Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth-Science Reviews, 104, 240–245. https://doi.org/10.1016/j.earscirev.2010.11.002

Cesco, S., Mimmo, T., Tonon, G., Tomasi, N., Pinton, R., Terzano, R., Neumann, G., Weisskopf, L., Renella, G., Landi, L., Nannipieri, P. (2012). Plant-borne flavonoids released into the rhizosphere: Impact on soil bio-activities related to plant nutrition. a review. Biology and Fertility of Soils, 48, 123–149. https://doi.org/10.1007/s00374-011-0653-2

Cesco, S., Neumann, G., Tomasi, N., Pinton, R., Weisskopf, L. (2010). Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant and Soil, 329, 12–15. https://doi.org/10.1007/s11104-009-0266-9

Chalkos, D., Karamanoli, K., Vokou, D. (2021). Monoterpene enrichments have positive impacts on soil bacterial communities and the potential of application in bioremediation. Plants (Basel), 10, 2536. https://doi.org/10.3390/plants10112536

Cheng, F., Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science, 6, 1020. https://doi.org/10.3389/fpls.2015.01020

Cheng, J., Jin, H., Zhang, J., Xu, Z., Yang, X., Liu, H., Xu, X., Min, D., Lu, D., Qin, B. (2022). Effects of allelochemicals, soil enzyme activities, and environmental factors on rhizosphere soil microbial community of Stellera chamaejasme L. along a growth-coverage gradient. Microorganisms, 10(1), 158. https://doi.org/10.3390/microorganisms10010158

Chodak, M., Pietrzykowski, M., Sroka, K. (2015). Physiological profiles of microbial communities in mine soils afforested with different tree species. Ecological Engineering, 81, 462–470. https://doi.org/10.1016/j.ecoleng.2015.04.077

Choi, B., Song, D., Kim, C., Song, B., Woo, S., Lee, C. (2011). Allelopathic effects of common ragweed (Ambrosia artemisiifolia var. Elatior) on the germination and seedling growth of crops and weeds. Korean Journal of Weed Science, 30(1), 34–42. https://doi.org/10.5660/KJWS.2010.30.1.034

Choudhary, C.S., Behera, B., Raza, B., Mrunalini, K., Bhoi, T.K., Lal, M.K., Nongmaithem, D., Pradhan, S., Song, B., Das, T.K. (2023). Mechanisms of allelopathic interactions for sustainable weed management. Rhizosphere, 25, 100667. https://doi.org/10.1016/j.rhisph.2023.100667

Chu, C., Mortimer, P.E., Wang, H., Wang, Y., Liu, X., Yu, S. (2014). Allelopathic effects of Eucalyptus on native and introduced tree species. Forest Ecology and Management, 323, 79–84. https://doi.org/10.1016/j.foreco.2014.03.004

Coviella, C.E., Stipanovic, R.D., Trumble, J.T. (2002). Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants. Journal of Experimental Botany, 53(367), 323–331. https://doi.org/10.1093/jexbot/53.367.323

Dalgleish, H.J., Koons, D.N., Adler, P.B. (2010). Can life-history traits predict the response of forb populations to changes in climate variability? Journal of Ecology, 98, 209–217. https://doi.org/10.1111/j.1365-2745.2009.01585.x

D’Antonio, C.M., Hughes, R.F. Mack, M., Hitchcock, D., Vitousek, P.M. (1998). The response of native species to removal of invasive exotic grasses in a seasonally dry Hawaiian woodland. Journal of Vegetation Science, 9(5), 699–712. https://doi.org/10.2307/3237288

Dassonville, N., Vanderhoeven, S., Vanparys, V., Hayez, M., Gruber, W., Meert, P. (2008). Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia, 157, 131–140. https://doi.org/10.1007/s00442-008-1054-6

De Groot, R.S., Blignaut, J., Van Der Ploeg, S., Aronson, J., Elmqvist, T., Farley, J. (2013). Benefits of investing in ecosystem restoration. Conservation Biology, 27(6), 1286–1293. https://doi.org/10.1111/cobi.12158

Didyk, N.P., Rositska, N.V., Ivanytska, B.O., Zaimenko. N.V. (2021). Interaction between soil drought and allelopathic factor on wheat seedlings performance. Biology and Life Sciences Forum, 4(1), 59. https://doi.org/10.3390/IECPS2020-08732

Diller, J.G.P., Hüftlein, F., Lücker, D., Feldhaar, H., Laforsch, C. (2023). Allelochemical run-off from the invasive terrestrial plant Impatiens glandulifera decreases defensibility in Daphnia. Scientific Reports, 13, 1207. https://doi.org/10.1038/s41598-023-27667-4

Ehlers, B.K. (2011). Soil microorganisms alleviate the allelochemical effects of a Thyme monoterpene on the performance of an associated grass species. PLoS ONE, 6(11), e26321. https://doi.org/10.1371/journal.pone.0026321

Estrada, J.A., Flory, S.L. (2015). Cogongrass (Imperata cylindrica) invasions in the US: Mechanisms, impacts, and threats to biodiversity. Global Change Biology, 3, 1–10. https://doi.org/10.1016/j.gecco.2014.10.014

Fan, L., Chen, Y., Yuan, J., Yang, Z. (2010). The effect of Lantana camara Linn. invasion on soil chemical and microbiological properties and plant biomass accumulation in southern China. Geoderma, 154(3-4), 370–378. https://doi.org/10.1016/j.geoderma.2009.11.010

Felpeto, A.B., Śliwińska-Wilczewska, S., Klin, M., Konarzewska, Z., Vasconcelos, V. (2019). Temperature-dependent impacts of allelopathy on growth, pigment, and lipid content between a subpolar strain of Synechocystis sp. CCBA MA-01 and coexisting microalgae. Hydrobiologia, 835, 117–128. https://doi.org/10.1007/s10750-019-3933-8

Fengler, F.H., Bressane, A., Carvalho, M.M., Longo, R.M., de Medeiros, G.A., de Melo, W.J., Jakovac, C.C., Ribeiro, A.I. (2017). Forest restoration assessment in Brazilian Amazonia: A new clustering-based methodology considering the reference ecosystem. Ecological Engineering, 108, 93–99. https://doi.org/10.1016/j.ecoleng.2017.08.00

Gao, X., Liu, L., Huang, Z. (2022). The impact of climate change on the distribution of rare and endangered tree Firmiana kwangsiensis using the Maxent modeling. Ecology and Evolution, 12(8), e9165. https://doi.org/10.1002/ece3.9165

Gaofeng, X., Shicai, S., Fudou, Z., Yun, Z., Hisashi, K.N., David, R.C. (2018). Relationship between allelopathic effects and functional traits of different allelopathic potential rice accessions at different growth stages. Rice Science, 25, 32–41. https://doi.org/10.1016/j.rsci.2017.09.001

Gatti, A.B., Takao, L.K., Pereira, V.C., Ferreira, A.G., Lima, M.I.S., Gualtieri, S.C.J. (2012). Seasonality effect on the allelopathy of cerrado species. Brazilian Journal of Biology, 74 (3 Suppl. 1), S064–S069. https://doi.org/10.1590/1519-6984.21512

Gibbons, S.M., Lekberg, Y., Mummey, D.L., Sangwan, N., Ramsey, P.W., Gilbert, J.A. (2017). Invasive plants rapidly reshape soil properties in a grassland ecosystem. mSystems, 2, e178–e216. https://doi.org/10.1128/msystems.00178-16

Gobbo-Neto, L., Lopes, N.P. (2007). Plantas medicinais: Fatores de influência no conteúdo de metabólitos secundários. Quimica Nova, 30(2), 374–381. http://dx.doi.org/10.1590/S0100-40422007000200026

Gruntman, M., Pehl, A.K., Joshi, S., Tielbörger, K. (2014). Competitive dominance of the invasive plant Impatiens glandulifera: Using competitive effect and response with a vigorous neighbour. Biological invasions, 16, 141–151. https://doi.org/10.1007/s10530-013-0509-9

Haichar, F.Z., Marol, C., Berge, O., Rangel-Castro, J.I., Prosser, J.I. (2008). Plant host habitat and root exudates shape soil bacterial community structure. ISME Journal, 2(12), 1211–1230.

Harris, J.A., Hobbs, R.J., Higgs, E., Aronson, J. (2006). Ecological restoration and global climate change. Restoration Ecology, 14(2), 170–176. https://doi.org/10.1111/j.1526-100X.2006.00136.x

Hartmann, M., Six, J. (2023). Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth and Environment, 4(1), 4–18. https://doi.org/10.1038/s43017-022-00366-w

Hashoum, H., Gavinet, J., Gauquelin, T., Baldy, V., Dupouyet, S. (2021). Chemical interaction between Quercus pubescens and its companion species is not emphasized under drought stress. European Journal of Forest Research, 140, 333–343. https://doi.org/10.1007/s10342-020-01337-w

He, W., Detheridge, A., Liu, Y.M., Wang, L., Wei, H.C., Griffith, G.W., Scullion, J., Wei, Y.H. (2019). Variation in soil fungal composition associated with the invasion of Stellera chamaejasme L. in Qinghai–Tibet plateau grassland. Microorganisms, 7(12), 587. https://doi.org/10.3390/microorganisms7120587

Hierro, J.L., Callaway, R.M. (2021). The ecological importance of allelopathy. Annual Review of Ecology, Evolution, and Systematics, 52, 25–45. https://doi.org/10.1146/annurev-ecolsys-051120-030619

Inderjit, Wardle, D.A., Karban, R., Callaway, R.M. (2011). The ecosystem and evolutionary contexts of allelopathy. Trends in Ecology & Evolution, 26(12), 655–662. https://doi.org/10.1016/j.tree.2011.08.003

Inderjit. 2005. Soil microorganisms: An important determinant of allelopathic activity. Plant and Soil, 274, 227–236. https://doi.org/10.1007/s11104-004-0159-x

IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services), (2019). Global assessment report on biodiversity and ecosystem services. Retrieved from https://ipbes.net/global-assessment

IPCC (Intergovernmental Panel on Climate Change), (2014). Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K., Meyer, A. (eds.)]. Geneva, Switzerland, 151 pp. Retrieved from https://www.ipcc.ch/report/ar5/syr/

IPCC (Intergovernmental Panel on Climate Change), (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., Malley, J. (eds.)]. Retrieved from https://www.ipcc.ch/srccl

IPCC (Intergovernmental Panel on Climate Change), (2021). Summary for policymakers. In: AR6 Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Retrieved from https://www.ipcc.ch/report/ar6/wg1/

Jamieson, M.A., Quintero, C., Blumenthal, D.M. (2013). Interactive effects of simulated nitrogen deposition and altered precipitation patterns on plant allelochemical concentrations. Journal of Chemical Ecology, 39, 1204–1208. https://doi.org/10.1007/s10886-013-0340-x

Jubase, N., Shackleton, R.T., Measey, J. (2021). Public awareness and perceptions of invasive alien species in small towns. Biology (Basel), 10(12), 1322. https://doi.org/10.3390/biology10121322.

Khamare, Y., Chen, J., Marble, S.C. (2022). Allelopathy and its application as a weed management tool: A review. Frontiers in Plant Science, 13, 1034649. https://doi.org/10.3389/fpls.2022.1034649

Kisielius, V., Hama, J.R., Skrbic, N., Hansen, H.S.C., Strobel, B.W., Rasmussen, L.H. (2020). The invasive butterbur contaminates stream and seepage water in groundwater wells with toxic Pyrrolizidine alkaloids. Scientific Reports, 10, 19784. https://doi.org/10.1038/s41598-020-76586-1

Kobayashi, K. (2004). Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biology and Management, 4, 1–7. https://doi.org/10.1111/j.1445-6664.2003.00112.x

Kostina-Bednarz, M., Płonka, J., Barchanska, H. (2023). Allelopathy as a source of bioherbicides: challenges and prospects for sustainable agriculture. Reviews in Environmental Science and Bio/Technology, 22, 471–504. https://doi.org/10.1007/s11157-023-09656-1

Kourtev, P., Ehrenfeld, J., Haggblom, M. (2003). Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biology and Biochemistry, 35(7), 895–905. https://doi.org/10.1016/S0038-0717(03)00120-2

Kremen, C., Ostfeld, R.S. (2005). A call to ecologists: measuring, analyzing, and managing ecosystem services. Frontiers in Ecology and the Environment, 3(10), 540–548. https://doi.org/10.1890/1540-9295(2005)003[0540:ACTEMA]2.0.CO;2

Lalljee, B., Facknath, S. (2000). Allelopathic interactions in soil. In: Narwal, S.S., Hoagland, R.E., Dilday, R.H., Reigosa, M.J. (eds.), Allelopathy in Ecological Agriculture and Forestry. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4173-4_4

Lankau, R.A. (2011). Resistance and recovery of soil microbial communities in the face of Alliaria petiolata invasions. New Phytologist, 189, 536–548. https://doi.org/10.1111/j.1469-8137.2010.03481.x

Lazzaro, L., Giuliani, C., Fabiani, A., Agnelli, A.E., Pastorelli, R., Lagomarsino, A., Benesperi, R., Clamassi, R., Foggi, B. (2014). Soil and plant changing after invasion: the case of Acacia dealbata in a Mediterranean ecosystem. Science of the Total Environment, 497-498, 491–498. https://doi.org/10.1016/j.scitotenv.2014.08.014

Lehoczky, E., Gólya, G., Szabó, R., Szalai, A. (2011). Allelopathic effects of ragweed (Ambrosia artemisiifolia L.) on cultivated plants. Communications in agricultural and applied biological sciences, 76(3), 545–549. https://doi.org/10.1016/j.cropro.2013.08.009

Lemos, M.F., Lemos M.F., Endringer D.C., Scherer R. (2015). Seasonality modifies rosemary’s composition and biological activity. Industrial Crops and Products, 70, 41–47. https://doi.org/10.1016/j.indcrop.2015.02.062.

Li, C., Tian, Q., Rahman, M. K.U., Wu, F. 2020. Effect of anti-fungal compound phytosphingosine in wheat root exudates on the rhizosphere soil microbial community of watermelon. Plant and Soil, 456, 223–240. https://doi.org/10.1007/s11104-020-04702-1

Li, Y.P., Feng, Y.L., Kang, Z.L., Zheng, Y.L., Zhang, J.L., Chen, Y.J. (2017). Changes in soil microbial communities due to biological invasions can reduce allelopathic effects. Journal of Applied Sciences, 54(5), 1281–1290. https://doi.org/10.1111/1365-2664.12878

Lobell, D.B., Gourdji, S.M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686–1697. https://doi.org/10.1104/pp.112.208298

Lobstein, A., Brenne, X., Feist, E., Metz, N., Weniger, B., Anton, R. (2001). Quantitative determination of naphthoquinones of Impatiens species. Phytochemical Analysis, 12(3), 202–205. https://doi.org/10.1002/pca.574.

Locatelli, B., Kanninen, M., Brockhaus, M., Colfer, C.J.P., Murdiyarso, D., Santoso, H. (2008). Facing an uncertain future: How forest and people can adapt to climate change. Forest Perspectives No 5, Center for International Forestry Research (CIFOR), Bogor, Indonesia. https://doi.org/10.17528/cifor/002600

Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., Hooper, D.U., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D. Wardle, D.A. (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294(5543), 804–808. https://doi.org/10.1126/science.1064088.

Lorenzo, P., Hussain, M.I., González, L. (2013). Role of allelopathy during invasion process by alien invasive plants in terrestrial ecosystems. In: Cheema, Z., Farooq, M., Wahid, A. (eds.), Allelopathy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30595-5_1

Luis, J.C., Johnson, C.B. (2005). Seasonal variations of Rosmarinic and Carnosic acids in rosemary extracts. analysis of their in vitro antiradical activity. Spanish Journal of Agricultural Research, 3, 106–112. https://doi.org/10.5424/sjar/2005031-130.

Lv, Y., Zhang, L., Li, P., He, H., Ren, X., Zhang, M. (2023). Ecological restoration projects enhanced terrestrial carbon sequestration in the Karst region of Southwest China. Frontiers in. Ecology and Evolution, 11, 1179608. https:// doi.org/11, 1179608. 10.3389/fevo.2023.1179608

Lv, Z.H. (2009). The impacts of climate change on the distribution of rare or endangered species in China and adaptations strategies. Beijing: Chinese Research Academy of Environmental Sciences.

Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M.G., Field, C.B., Knowlton, N. (2020). Climate change and ecosystems: threats, opportunities and solutions. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1794), 20190104. http://doi.org/10.1098/rstb.2019.0104

Maqbool, N., Abdul, W. (2013). Allelopathy and abiotic stress interaction in crop plants. In: Cheema, Z., Farooq, M., Wahid, A. (eds.), Allelopathy: Current trends and future applications. Springer, Berlin, Heidelberg, p. 451–468. https://doi.org/10.1007/978-3-642-30595-5_19

Maqbool, N., Wahid, A., Farooq, M., Cheema, Z.A., Siddique, K.H.M. (2013). Allelopathy and abiotic stress interaction in crop plants. In: Allelopathy: Current Trends and Future Applications. Springer-Verlag, Germany, p. 451–468. https://doi.org/10.1007/978-3-642-30595-5_19

Mohammadkhani, N., Servati, M. (2018). Nutrient concentration in wheat and soil under allelopathy treatments. Journal of Plant Research, 131(1), 143–155. https://doi.org/10.1007/s10265-017-0981-x.

Motamedi, M., Karimmojeni, H., Sini, F.G. (2016). Evaluation of allelopathic potential of safflower genotypes (Carthamus tinctorius L.). Journal of Plant Protection Research, 56(4), 364–371. https://doi.org/10.1515/jppr-2016-0049

Motmainna, M., Juraimi, A.S., Ahmad-Hamdani, M.S., Hasan, M., Yeasmin, S., Anwar, M.P., Islam, A.K.M.M. (2023). Allelopathic potential of tropical plants—a review. Agronomy, 13, 2063. https://doi.org/10.3390/agronomy13082063

Muhammad, A.K., Cheng, Z.H., Xiao, X.M., Khan, A.R., Ahmed, S.S. (2011). Ultrastructural studies of the inhibition effect against Phytophthora capsici of root exudates collected from two garlic cultivars along with their qualitative analysis. Crop Protection, 30(9), 1149–1155. https://doi.org/10.1016/j.cropro.2011.04.013

Munné-boschs., S., Alegre, L. (2000). Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta, 210, 925–931. https://doi.org/10.1007/s004250050699.

Nogués-Bravo, D., Araújo, M.B., Errea, M.P., Martínez-Rica, J.P. (2007). Exposure of global mountain systems to climate warming during the 21st century. Global Environmental Change, 17(3-4), 420–428. http://doi.org/10.1016/j.gloenvcha.2006.11.007

Ortiz, A.M.D., Outhwaite, C.L., Dalin, C., Newbold, T. (2021). A review of the interactions between biodiversity, agriculture, climate change, and international trade: Research and policy priorities. One Earth, 4(1), 88–101. https://doi.org/10.1016/j.oneear.2020.12.008

Pautasso, M., Döring, T.F., Garbelotto, M., Pellis, L., Jeger, M.J. (2012). Impacts of climate change on plant diseases—opinions and trends. European Journal of Plant Pathology, 133(1), 295–313. https://doi.org/10.1007/s10658-012-9936-1

Pejchar L., Mooney H.A. (2009). Invasive species, ecosystem services and human well-being. Trends in Ecology and Evolution, 24(9), 497–504. https://doi.org/10.1016/j.tree.2009.03.016

Powell, K.I., Chase, J.M., Knight, T.M. (2013). Invasive plants have scale-dependent effects on diversity by altering species–area relationships. Science, 339, 316–318. https://doi.org 10.1126/science.122681

Puig, C.G., Gon, R., Valentão, P., Andrade, P., Roger, M.R., Pedrol, N. (2018). The consistency between phytotoxic effects and the dynamics of allelochemicals release from Eucalyptus globulus leaves used as bioherbicide green manure. Journal of Chemical Ecology, 44(5), 1–13. https://doi.org /10.1007/s10886-018-0983-8

Pyšek, P., Jarošík, V., Hulme, P.E., Pergl, J., Hejda, M., Schaffner, U., Vilà, M. (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Global Change Biology, 18, 1725–1737. https://doi.org 10.1111/j.1365-2486.2011.02636.x

Pyšek, P., Richardson, D.M. (2010). Invasive species, environmental change and management, and health. Annual Review of Environment and Resources, 35(1), 25–55. https://doi.org/10.1146/annurev-environ-033009-095548

Qu, T., Du, X., Peng, Y., Guo, W., Zhao, C., Losapio, G. (2021). Invasive species allelopathy decreases plant growth and soil microbial activity. PLoS One, 16(2), e0246685. https://doi.org/10.1371/journal.pone.0246685.

Rai, P.K., Singh, J.S. (2020). Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecological Indicators, 111, 106020. https://doi.org/10.1016/j.ecolind.2019.106020.

Räisänen, T., Ryyppö, A., Julkunen-Tiitto, R., Kellomäki, S. (2008). Effects of elevated CO2 and temperature on secondary compounds in the needles of Scots pine (Pinus sylvestris L.). Trees, 22, 121–135. https://doi.org/10.1007/s00468-007-0175-6

Reidsma, P., Ewert, F., Boogaard, H., van Diepen, K. (2009). Regional crop modelling in Europe: The impact of climatic conditions and farm characteristics on maize yields. Agricultural Systems, 100(1–3), 51–60. https://doi.org/10.1016/j.agsy.2008.12.009

Ridenour, W.M., Callaway, R.M. (2001). The relative importance of allelopathy in interference: The effects of an invasive weed on a native bunchgrass. Oecologia, 126(3), 444–450. https://doi.org/10.1007/s004420000533

Rositska, N. (2020). Influence of drought on allelopathic properties of Pinus sylvestris L. Plant Introduction, (85/86), 41–49. https://doi.org/10.46341/PI2019001

Ruckli, R., Hesse, K., Glauser, G., Rusterholz, H.P., Baur, B. (2014). Inhibitory potential of naphthoquinones leached from leaves and exuded from roots of the invasive plant Impatiens glandulifera. Journal of Chemical Ecology, 40(4), 371–378. https://doi.org/10.1007/s10886-014-0421-5

Rutgers, M., Wouterse, M., Drost, S.M., Breure, A.M., Mulder, C., Stone, D., Creamer, R.E., Winding, A., Bloem, J. (2016). Monitoring soil bacteria with community-level physiological profiles using Biolog™ ECO-plates in the Netherlands and Europe. Applied Soil Ecology, 97, 23–35. https://doi.org/10.1016/j.apsoil.2015.06.007

Scavo, A., Abbate, C., Mauromicale, G. (2019). Plant allelochemicals: Agronomic, nutritional and ecological relevance in the soil system. Plant and Soil, 442, 23–48. https://doi.org/10.1007/s11104-019-04190-y

Scavo, A., Mauromicale, G. 2021. Crop allelopathy for sustainable weed management in agroecosystems: Knowing the present with a view to the future. Agronomy, 11, 2104. https://doi.org/10.3390/agronomy11112104

Shen, H., Yan, X.L., Zhao, M., Zheng, S., Wang, X. (2002). Exudation of organic acids in common bean as related to mobilization of aluminum and ironbound phosphates. Environmental and Experimental Botany, 48, 1–9. https://doi.org/10.1016/S0098-8472(02)00009-6

Shi, N., Naudiyal, N., Wang, J., Gaire, N.P., Wu, Y., Wei, Y., He, J., Wang, C. (2022). Assessing the impact of climate change on potential distribution of Meconopsis punicea and its influence on ecosystem services supply in the Southeastern margin of Qinghai-Tibet plateau. Frontiers in Plant Science, 12, 830119. https://doi.org/10.3389/fpls.2021.830119

Shivanna, K.R. (2022). Climate change and its impact on biodiversity and human welfare. Proceedings of the Indian National Science Academy, 88(2), 160–171. https://doi.org/10.1007/s43538-022-00073-6

Simonson, W.D., Miller, E., Jones, A., García-Rangel, S., Thornton, H., McOwen, C. (2021). Enhancing climate change resilience of ecological restoration — A framework for action. Perspectives in Ecology and Conservation, 19(3), 300–310. https://doi.org/10.1016/j.pecon.2021.05.002

Singh, A.A., Rajeswari. G., Nirmal, L.A., Jacob, S. (2021). Synthesis and extraction routes of allelochemicals from plants and microbes: A review. Reviews in Analytical Chemistry, 40(1), 293–311. https://doi.org/10.1515/revac-2021-0139

Slesak, R.A., Harrington, T.B., D’Amato, A.W. (2016). Invasive scotch broom alters soil chemical properties in Douglas-fir forests of the Pacific Northwest. USA. Plant and Soil, 398, 281–289. https://doi.org/10.1007/s11104-015-2662-7

Staddon, W.J., Trevors, J.T., Duchesne, L.C. (1998). Soil microbial diversity and community structure across a climatic gradient in western Canada. Biodiversity and Conservations, 7, 1081–1092. https://doi.org/10.1023/A:1008813232395

Steinlein, T. (2013). Invasive alien plants and their effects on native microbial soil communities In: Lüttge, U., Beyschlag, W., Francis, D., Cushman, J. (eds.), Progress in Botany. Progress in Botany (Genetics—Physiology—Systematics—Ecology), vol 74 Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30967-0_11

Sun, G., Luo, P., Wu, N., Qiu, P.F., Gao, Y.H., Chen, H., Shi, F.S. (2009). Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology and Biochemistry, 41, 86–91. https://doi.org/10.1016/j.soilbio.2008.09.022

Telwala, Y., Brook, B.W., Manish, K., Pandit, M.K. (2013). Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE, 8(2), e57103. https://doi.org/10.1371/journal.pone.0057103

Thornton, P.K., Lipper, L. (2014). How does climate change alter agricultural strategies to support food security? IFPRI Discussion Paper 1340. Washington, D.C.: International Food Policy Research Institute (IFPRI) and Food and Agriculture Organization (FAO) http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/128124

Tilman, D. (1999). The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80(5), 1455–1474. https://doi.org/10.1890/0012-9658(1999)080[1455:TECOCI]2.0.CO;2

Tredennick, A.T., Hooten, M.B., Aldridge, C.L., Homer, C.G., Kleinhesselink, A.R., Adler, P.B. (2016). Forecasting climate change impacts on plant populations over large spatial extents. Ecosphere, 7(10), e01525. http://doi.org/10.1002/ecs2.1525

Urban, M.C. (2015). Climate change. Accelerating extinction risk from climate change. Science, 348(6234), 571–573. https://doi.org/10.1126/science.aaa4984

Vanderhoeven, S., Dassonville, N., Chapuis-Lardy, L., Hayez, M., Meerts, P. (2006). Impact of the invasive alien plant Solidago gigantea on primary productivity, plant nutrient content and soil mineral nutrient concentrations. Plant and Soil, 286, 259–268. https://doi.org/10.1007/s11104-006-9042-2

Wang, A., Melton, A.E., Soltis, D.E., Soltis, P.S. (2022a). Potential distributional shifts in North America of allelopathic invasive plant species under climate change models. Plant Diversity, 44(1), 11–19. https://doi.org/10.1016/j.pld.2021.06.010

Wang, G., Ren, Y., Bai, X., Su, Y., Han, J. (2022b). Contributions of beneficial microorganisms in soil remediation and quality improvement of medicinal plants. Plants, 11(23), 3200. https://doi.org/10.3390/plants11233200

Wang, C., Liu, J., Zhou, J. (2017). N deposition affects allelopathic potential of Amaranthus retroflexus with different distribution regions. The Annals of the Brazilian Academy of Sciences, 89(2), 919–926. https://doi.org/10.1590/0001-3765201720160513

Wang, R.L., Staehelin, C., Peng, S.L., Wang, W.T., Xie, X.M., Lu, H.N. (2010). Responses of Mikania micrantha, an invasive weed to elevated CO2: Induction of β-caryophyllene synthase, changes in emission capability and allelopathic potential of β-Caryophyllene. Journal of Chemical Ecology, 36(10), 1076–1082. https://doi.org/10.1007/s10886-010-9843-x

White, C.S. (1994). Monoterpenes: Their effects on ecosystem nutrient cycling. Journal of Chemical Ecology, 20, 1381–1406. https://doi.org/10.1007/BF02059813

Wu, R., Wu, B., Cheng, H., Wang, S., Wei, M., Wang, C. (2021). Drought enhanced the allelopathy of goldenrod on the seed germination and seedling growth performance of Lettuce. Polish Journal of Environmental Studies, 30(1), 423–432. https://doi.org/10.15244/pjoes/122691

Xiao, Z.X., Lu, S.G., Xu, Z.H. (2019). Biochemistry of allelopathic plant residues in soil. Ekoloji Dergisi, 107, 2997–3006.

Xu, H., Qiang, S., Han, Z., Guo, J., Huang, Z., Sun, H., He, S., Ding, H., Wu, H., Wan, F. (2006). The status and causes of alien species invasion in China. Biodiversity and Conservation, 15(9), 2893–2904. https://doi.org/10.1007/s10531-005-2575-5

Xu, Y., Chen, X., Ding, L., Kong, C.H. (2023). Allelopathy and allelochemicals in grasslands and forests. Forests, 14(3), 562. https://doi.org/10.3390/f14030562

Zandi, P., Barabasz-Krasny, B., Stachurska-Swakoń, A., Puła, J., Możdżeń, K. (2020). Allelopathic effect of invasive Canadian goldenrod (Solidago canadensis L.) on early growth of red clover (Trifolium pratense L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 2060-2071. https://doi.org/10.15835/nbha48412081

Zandi, P., Możdżeń, K., Barabasz-Krasny, B., Puła, J., Stachurska-Swakoń, A., Wang, Y. (2019). The influence of aqueous extracts from Stellaria media L. on the growth of Zea mays L. cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3), 921–928. https://doi.org/10.15835/nbha47311597

Zenni, R.D., da Cunha, W.L., Sena, G. (2016). Rapid increase in growth and productivity can aid invasions by a non-native tree. AoB Plants, 8, plw048. https://doi.org/10.1093/aobpla/plw048.

Zhang, C., Fu, S. (2009). Allelopathic effects of Eucalyptus and the establishment of mixed stands of Eucalyptus and native species. Forest Ecology and Management, 258(7), 1391–1396. https://doi.org/10.1016/j.foreco.2009.06.045

Zhang, C.B., Jiang, W., Qian, B.Y., and Li, W.H. (2009). Effects of the invader Solidago canadensis on soil properties. Applied Soil Ecology, 43, 163–169. https://doi.org/10.1016/j.apsoil.2009.07.001

Zhang, Z., Liu, Y., Yuan, L., Weber, E., Kleunen, M. (2021). Effect of allelopathy on plant performance: A meta-analysis. Ecology Letters, 24(2), 348–362. https://dx.doi.org/10.1111/ele.13627

Zhong, S., Xu, Z., Cheng, H., Wang, Y., Yu, Y., Du, D., Wang, C. (2023). Does drought stress intensify the allelopathy of invasive woody species Rhus typhina L.? Trees, 37, 811–819. https://doi.org/10.1007/s00468-022-02385-y

Zhu, X., Li, X., Xing, F., Chen, C., Huang, G., Gao, Y. (2020). Interaction between root exudates of the poisonous plant Stellera chamaejasme L. and Arbuscular mycorrhizal fungi on the growth of Leymus chinensis (Trin.) Tzvel. Microorganisms, 8(3), 364. https://doi.org/10.3390/microorganisms8030364

Downloads

Published

2023-12-01

How to Cite

Zandi, P., Darma, A., Li, Q., Zhou, X., Yaosheng, W., & Schnug, E. (2023). A review of significance of allelopathy in anticipating negative climate change effects. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 8(1). https://doi.org/10.24917/25438832.8.12

Issue

Section

Various