Effect of copper and vanadium ions on morphology of carrot (Daucus carota L. subsp. sativus (Hoffm.) Schübl. & G. Martens) and wheat (Triticum aestivum L.) plants

Authors

  • Iwona Konieczna Pedagogical University, Institute of Biology, Podchorążych 2, 30-084 Kraków, Poland
  • Grzegorz Rut Pedagogical University, Institute of Biology, Podchorążych 2, 30-084 Kraków, Poland
  • Angelika Kliszcz Department of Agrotechnology and Agricultural Ecology, University of Agriculture in Krakow, Mickiewicz Av. 21, 31-120 Kraków, Poland

DOI:

https://doi.org/10.24917/25438832.3.4

Keywords:

photosynthesis, carrot, heavy metals, copper, wheat, vanadium

Abstract

In the whole world, researches are conducting on toxic effect of heavy metals on living organisms. The problem with heavy metal occurrence in the environment is not only associated with their toxicity, but also with their ability to accumulate inside living organisms. This study presents the effect of copper and vanadium ions on germination and growth of carrot (Daucus carota L subsp. sativus (Hoffm.) Schübl. & G. Martens.) and winter wheat (Triticum aestivum L.). The experiment was carried out in two independent series with ten repetitions each. The water solutions of copper (CuSO4) and vanadium (H4NO3V) salts with the concentrations: 0.6 mM, 0.3 mM, 3 mM and 6 mM were used. The control groups were objects watered with distilled water. The conducted experiment showed that, the copper and vanadium ions had negative effect on germination and growth of plants. With the increasing of concentration of heavy metal ions an inhibition of seeds germination capacity was observed. The length of D. carota and T. aestivum seedlings in each salt solutions was inhibited, compared to the control group. During the growth phase, the stimulation of wheat leaves growth, only on copper solutions with concentration 3 mM and 6 mM was observed. Changes of a fresh and dry weight, and a water content were observed, depending on the copper and vanadium ions concentration.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Barbacki, S., Berbeć, J., Byszewski, W., Dembiński, F., Gabriel, W., Jakacki, A., Jelinowska, A., Klaudel, J., Kubicki, K., Listowski, A., Roztropowicz, S., Ruszkowski, M., Sulinowski, S., Spniewski, J. (1970). Uprawa roślin. Warszawa: Państwowe Wydawnictwo Rolnicze i Leśne, p. 318–319.

Barberon, M., Geldner, N. (2014). Radial transport of nutrients: the plant root as a polarized epithelium. Plant Physiology, 166, 528–537. https://doi.org/10.1104/pp.114.246124

Bewley, J.D. (1997). Seed germination and dormancy. Plant Cell, 9, 1055–1066. https://doi.org/10.1105%2Ftpc.9.7.1055

Burnie, G. (2005). Botanica. Königswinter, Niemcy: Könemann.

Ciećko, Z., Wyszkowski, M., Żołnowski, A. (2000). Działanie zanieczyszczenia gleby ołowiem i nawożenia wapniem na plonowanie i skład chemiczny kukurydzy. Zeszyty Problemowe Postępów Nauk Rolniczych, 472, 129–136. [In Polish]

Dey, S., Mazumder, P.B., Paul, S.B. (2015). Copper-induced changes in growth and antioxidative mechanisms of tea plant (Camellia sinensis (L.) O. Kuntze). African Journal of Biotechnology, 14, 582–592. https://doi.org/10.5897/AJB2014.14279

Dorywalski, J., Kochman, J., Kozakiewicz, J., Rovenska, B., Rubenbauer, T., Strebeyko, P. (1976). Biologia pszenicy. Warszawa: Państwowe Wydawnictwo Naukowe. [In Polish]

Emamverdian, A. Ding, Y., Mokhberdoran, F., Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 1–18. https://doi.org/10.1155/2015/756120

Gil, F., Capitán-Vallvey, L.F., De Santiago, E., Ballesta, J., Pla, A., Hernández, A.F. , Gutiérrez-Bedmar, M., Fernández-Crehuet, J., Gómez, J., López-Guarnido, O., Rodrigo, L., Villanueva, E. (2006). Heavy metal concentrations in the general population of Andalusia, South of Spain A comparison with the population within the area of influence of Aznalcóllar mine spill (SW Spain). Science of the Total Environment, 372, 49–57. https://doi.org/10.1016/j.scitotenv.2006.08.004

Gori, P., Schiff, S., Santandrea, G., Bennici, A. (1998). Response of in vitro cultures of Nicotiana tabacum L. to copper stress and selection of plants from Cu tolerant callus. Plant Cell Tissue and Organic Culture, 53, 161–169.

Grupe, M., Kuntze, H. (1988). Zur Ermittlung der Schwermetallverfügbarkeit lithogen und anthropogen belasteter Standorte. I. Cd und Cu. Zeitschrift für Pflanzenernährung und Bodenkunde, 151, 139–324. [In German]

Gwóźdź, E. (2017). Pszenica – opis, właściwości i zastosowanie. Zboże pszenica ciekawostki. http://www.ekologia.pl/styl-zycia/zdrowa-zywnosc/pszenica-opis-wlasciwosci-i-zastosowanie-zboze-pszenica-ciekawostki,23129.html (27/12/2017). [In Polish]

Hossain, M.A., Piyatida, P., da Silva, J.A.T., Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 37. https://doi.org/10.1155/2012/872875

Janas, K.M., Zielińska-Tomaszewska, J., Rybaczek, D., Posmyka, M.M., Amarowicz, R., Kosińska, A. (2010). The impact of copper ions on growth, lipid peroxidation, and phenolic compound accumulation and localization in lentil (Lens culinaris Medic.) seedlings. Journal of Plant Physiology, 167(4), 270–276. https://doi.org/10.1016/j.jplph.2009.09.016

Joshi, A., Kothari, S.L. (2007). High copper levels in the medium improves shoot bud differentiation and elongation from the cultured cotyledons of Capsicum annuum L. Plant Cell Tissue and Organic Culture, 88, 127–133. https://doi.org/10.1007/s11240-006-9171-6

Kabata-Pendias, A., Pendias, H. (1999). Biogeochemia pierwiastków śladowych. Warszawa: Wydawnictwo Naukowe PWN. [In Polish]

Karcz, H., Kantorek, M., Grabowicz, M., Wierzbicki, K. (2013). Możliwość wykorzystania słomy jako źródła paliwowego w kotłach energetycznych. Piece przemysłowe i kotły, 8–15. [In Polish]

Kozłowska, M. (2007). Fizjologia roślin Od teorii do nauk stosowanych. Warszawa: Państwowe Wydawnictwo Rolnicze i Leśne, pp. 466–468. [In Polish]

Krzesłowska, M. (2011). The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum, 33, 35–51. https://doi.org/10.1007/s11738-010-0581-z

Kunachowicz, H., Przygoda, B., Nadolna, I., Iwanow, K. (2017). Tabele składu i wartości odżywczej żywności. Warszawa: Wydawnictwo Lekarskie PZWL, p. 498. [In Polish]

Luo, Ch., Yang, R., Wang, Y., Li, Y., Zhang, G., Li, X. (2012). Influence of agricultural practice on trace metals in soils and vegetation in the water conservation area along the East River (Dongjiang River), South China. Science of the Total Environment, 431, 26–32. https://doi.org/10.1016/j.scitotenv.2012.05.027

Manivasagaperumal, R., Vijayarengan, P., Balamurugan, S., Thiyagarajan, G. (2011). Effect of copper on growth, dry matter yield and nutrient content of Vigna radiata (L.) Wilczek. Journal of Phytology, 3, 53–62.

Mesmar, M.N., Jaber, K. (1991). The toxic effect of lead on seed germination, growth, chlorophyll and protein contents of wheat and lens. Acta Biologica Hungarica, 42(4), 331–44.

Możdżeń, K., Rzepka, A. (2016). Rola łupiny nasiennej podczas kiełkowania i wzrostu nasion bobu (Vicia faba L.) w obecności siarczanu ołowiu. Annales UMCS Sectio E Agricultura, 71(4), 55–65. [In Polish]

Możdżeń, K., Wanic, T., Rut, G., Łaciak , T., Rzepka, A. (2017). Toxic effect on the physiological processes in Pinus sylvestris L. grown under high copper content. Photosynthetica, 55(1), 193–200. https://doi.org/10.1007/s11099-016-0229-3

Otałęga, Z. (1998). Encyklopedia biologiczna. Tom VI, IX. Kraków: Agencja Publicystyczno-Wydawnicza Opres. [In Polish]

Oves, M., Saghir Khan, M., Huda Qari, A., Nadeen Felemban, M., Almeelbi, T. (2016). Heavy metals: biological importance and setoxification strategies. Journal of Bioremediation and Biodegradation, 7(2), 1–15. https://doi.org/10.4172/2155-6199.1000334

Peralta-Videa, J.R., Lopez, M.L., Narayan, M., Saupe, G., Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. The International Journal of Biochemistry and Cell Biology, 41, 1665–1677. https://doi.org/10.1016/j.biocel.2009.03.005

Purnhauser, L., Gyulai, G. (1993). Effect of copper on shoot and root regeneration in wheat, triticale, rape and tobacco tissue cultures. Plant Cell Tissue and Organic Culture, 35, 131–139. https://doi.org/10.1007/BF00032962

Qishlaqi, A., Moore, F. (2007). Statistical analysis of accumulation and sources of heavy metals occurrence in agricultural soils of Khoshk River Banks, Shiraz, Iran. American-Eurasian Journl of Agriculture and Environonmental Science, 2(5), 565–573.

Qureshi, M.I., Abdin, M.Z., Qadir, S., Iqbal, M. (2007). Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biologia Plantarum, 51, 121–128. https://doi.org/10.1007/s10535-007-0024-x

Rucińska-Sobkowiak, R., Pukacki, P.M. (2006). Antioxidative defense system in lupin roots exposed to increasing concentrations of lead. Acta Physiologiae Plantarum, 28, 357–364. https://doi.org/10.1007/s11738-006-0032-z

Starck, R. (1984). Uprawa roli i nawożenie roślin ogrodniczych. Warszawa: Państwowe Wydawnictwo Rolnicze i Leśne. [In Polish]

Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J. (2014). Heavy metals toxicity and the environment. National Institiutes Health, 1–30. https://doi.org/10.1007%2F978-3-7643-8340-4_6

The Plant List. A working list of all plant species. http://www.theplantlist.org/browse/A/Poaceae/Triticum/

Wang, S., Shi, X. (2001). Molecular mechanisms of metal toxicity and carcinogenesis. Molecular and Cell Biochemistry, 222, 3–9. https://doi.org/10.1023/A:1017918013293

Weber, R., Hryńczuk, B. (2000). Effect of leaf and soil contaminations on heavy metals content in spring wheat crops. Nukleonika, 45(2), 137–140.

Wierzbicka, M. (2015). Ekotoksykologia rośliny, gleby, metale. Warszawa: Wydawnictwo Uniwersytetu Warszawskiego, p. 17. [In Polish]

Wojnarowicz, G., Jacquard, C., Devaux, P., Sangwan R.S., Clement, C. (2002). Influence of copper sulfate on anther culture in barley (Hordeum vulgare L.). Plant Science, 162, 843–847.

Downloads

Published

2018-12-31

How to Cite

Konieczna, I., Rut, G., & Kliszcz , A. (2018). Effect of copper and vanadium ions on morphology of carrot (Daucus carota L. subsp. sativus (Hoffm.) Schübl. & G. Martens) and wheat (Triticum aestivum L.) plants. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 3(1), 55–69. https://doi.org/10.24917/25438832.3.4

Issue

Section

Experimental Biology