Photosynthetic activity of Daucus carota L. subsp. sativus (Hoffm.) Schübl. & G. Martens and Triticum aestivum L. in the presence of copper and vanadium ions

Authors

  • Iwona Konieczna Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland
  • Grzegorz Rut Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland
  • Angelika Kliszcz Department of Agrotechnology and Agricultural Ecology, University of Agriculture in Krakow, Mickiewicz Av. 21, 31-120 Kraków, Poland

DOI:

https://doi.org/10.24917/25438832.3.5

Keywords:

photosynthesis, carrot, heavy metals, copper, wheat, vanadium

Abstract

The aim of this study was to investigate the influence of copper and vanadium ions on photosynthetic activity of carrot (Daucus carota L. subsp. sativus (Hoffm.) Schübl. & G. Martens) and winter wheat (Triticum aestivum L.). Measurements of the total chlorophyll content were performed - the SPAD chlorometer and the basic chlorophyll a fluorescence parameters were determined using the FMS-1 fluorometer - Hansatech. The studies used aqueous solutions of copper salt (CuSO4) and vanadium (H4NO3V), with molar concentrations: 0.6 mM, and 3 mM. The control group consisted of plants watered with distilled water. Both in carrots and in wheat, together with an increase in the concentration of heavy metal ions, a decrease in the content of chlorophyll was observed and significant changes in the activity of the photosystem were demonstrated II. Measurements of chlorophyll fluorescence kinetics and only in D. carota subsp. sativus showed a statistically significant effect of 3 mM solutions of copper and vanadium ions on photosynthetic activity. In T. aestivum none of the heavy metal ions induced significant changes in the values of chlorophyll a fluorescence.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Becker, J.M., Parkin, T., Nakatsu C.H., Wilbur, J.D., Konopka, A. (2006). Bacterial activity, community structure and centimeter-scale spatial heterogeneity in contaminated soil. Microbial Ecology, 51, 221–231. https://doi.org/10.1007/s00248-005-0002-9

Björkmann, O., Demming, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489–504. https://doi.org/10.1007/BF00402983

Bowen, H.J.M. (1979). Environmental chemistry of the elements. London: Academic Press, p. 333.

Burzyński, M., Żurek, A. (2007). Effects of copper and cadmium on photosynthesis in cucumber cotyledons. Photosynthetica, 45, 239–244. https://doi.org/10.1007/s11099-007-0038-9

Chaney, R., Malik, M., Li, Y.M., Brown, S.L., Brewer, E.P., Angle, J.S., Baker, A.J.M., (1998). Phytoremediation of soil metals. Current Options in Biotechnology, 8, 279–284. https://doi.org/10.1016/S0958-1669(97)80004-3

Emamverdian, A., Ding, Y., Mokhberdoran, F., Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 1–18. https://doi.org/10.1155/2015/756120

Formicki, G. (2010). Metale ciężkie w środowisku wodnym. Właściwości toksyczne, biologiczne dostępność i kumulacja w tkankach zwierząt. Kraków: Wydawnictwo Naukowe Uniwersytetu Pedagogicznego, p. 16. [In Polish]

Gad, N. (2005). Interactive effect of salinity and cobalt on tomato plants. II. Some physiological parameters as affected by cobalt and salinity. Research Journal of Agriculture and Biological Science, 1(3), 270–276.

Gonzalez-Mendoza, D., Espadas y Gilb, F., Santamaria, J.M., Zapata-Pereza, O. (2007). Multiple effects of cadmium on the photosynthetic apparatus of Avicennia germinans L. as probed by OJIP chlorophyll fluorescence measurement. Zeitschrift für Naturforschung, 62c, 265–272. https://doi.org/10.1515/znc-2007-3-418

Gruca-Królikowska, S., Wacławek, W. (2006). Metale w środowisku. Cz. II. Wpływ metali ciężkich na rośliny. Chemia, Dydaktyka, Ekologia, Metrologia, 11(1–2), 41–55. [In Polish]

Inal, A., Gunes, A., Zhang, F., Cakmak, I. (2007). Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiology and Biochemistry, 45, 350–356. https://doi.org/10.1016/j.plaphy.2007.03.016

Jin, C.W., Zheng, S.J., He, Y.F., Zhou, G.D., Zhou, Z.X. (2005). Lead contamination in tea garden soils and factors affecting its bioavailability. Chemosphere, 59, 1151–1159. https://doi.org/10.1016/j.chemosphere.2004.11.058

Jing, Y., He, Z., Yang, X. (2007). Role of soil Rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University Science B, 8(3), 192–207. https://doi.org/10.1631/jzus.2007.B0192

Joshi, A., Kothari, S.L. (2007). High copper levels in the medium improves shoot bud differentiation and elongation from the cultured cotyledons of Capsicum annuum L. Plant Cell Tissue and Organic Culture, 88, 127–133. https://doi.org/10.1007/s11240-006-9171-6

Joshi, M.K., Mohanty, P. (2004). Chlorophyll a fluorescence as a probe of heavy metal ion toxicity in plants. In: Papageorgiou (ed.), Advances in photosynthesis and respiration, pp. 637–661.

Kabata-Pendias, A., Pendias, H. (1979). Pierwiastki śladowe w środowisku biologicznym. Warszawa: Wydawnictwo Geologiczne, p. 87. [In Polish]

Kabata-Pendias, A., Pendias, H. (1999). Biogeochemia pierwiastków śladowych. Warszawa: Wydawnictwo Naukowe PWN. [In Polish]

Kalaji, M.H., Łoboda, T. (2010). Fluorescencja chlorofilu w badaniach stanu fizjologicznego roślin. Warszawa: Wydawnictwo SGGW. [In Polish]

Kandil, H. (2007). Effect of cobalt fertilizer on growth, yield and nutrient status of faba bean (Vicia faba L.) plants. Journal of Applied Sciences Research, 3(9), 867–872.

Karczewska, A., Spiak, Z., Kabała, C., Gałka, B., Szopka, K., Jezierski, P., Kocan, K. (2008). Ocena możliwości zastosowania wspomaganej fitoekstrakcji do rekultywacji gleb zanieczyszczonych emisjami hutnictwa miedzi. Wrocław: Wydawnictwo Zante. [In Polish]

Krupa, Z., Baszyński, T. (1995). Some aspects of heavy metals toxicity towards photosynthetic apparatus-direct and indirect effects on light and dark reaction. Acta Physiologiae Plantarum, 17, 177–190.

Lewis, S., Donkin, M.E., Depledge, M.H. (2001). Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquatic Toxicology, 51, 277–291. https://doi.org/10.1016/S0166-445X(00)00119-3

Maciejewska, A. (2003). Problematyka rekultywacji gleb zanieczyszczonych metalami ciężkimi w świetle literatury. Obieg pierwiastków w przyrodzie, pp. 539–550. [In Polish]

Maksymiec, W. (1997). Effect of copper on cellular processes in higher plants. Photosynthetica, 34, 321–342. https://doi.org/10.1023/A:1006818815528

McGrath, S., Lombi, E., Zhao, F.-J. (2001). What’s new about cadmium hyperaccumulation? New Phytology, 149, 2–3. https://doi.org/10.1046/j.1469-8137.2001.00024.x

Morell, B.C., Lepp, N.W., Phipps, D.A. (1986). Vanadium uptake by higher plants: some recent developments. Environmental Geochemistry and Health, 8, 14–18. https://doi.org/10.1007/BF02280116

Możdżeń, K., Rzepka, A. (2016). Rola łupiny nasiennej podczas kiełkowania i wzrostu nasion bobu (Vicia faba L.) w obecności siarczanu ołowiu. Annales UMCS Sectio E Agricultura, 71(4), 55–65. [In Polish]

Możdżeń, K., Wanic, T., Rut, G., Łaciak, T., Rzepka, A. (2017). Toxic effect on the physiological processes in Pinus sylvestris L. grown under high copper content. Photosynthetica, 55(1), 193–200. https://doi.org/10.1007/s11099-016-0229-3

Murkowski, A. (2002). Oddziaływanie czynników stresowych na luminescencję chlorofilu w aparacie fotosyntetycznym roślin uprawnych. Monografia 61, Lublin: Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN. [In Polish]

Ociepa-Kubicka, A., Ociepa, E. (2012). Toksyczne oddziaływanie metali ciężkich na rośliny, zwierzęta i ludzi. Inżynieria i Ochrona Środowiska, 15(2), 169–180. [In Polish]

Parys, E., Romanowska, E., Siedlecka, M., Poskuta, J. (1998). The effects of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum. Acta Physiologiae Plantarum, 20, 313–322. https://doi.org/10.1007/s11738-998-0064-7

Perez-Espinosa, A., Moreno-Caselles, J., Moral, R., Perez-Murcia, M.D., Gomez, I. (2002). Effect of cobalt on chlorophyll and carotenoids contents in tomato plants. Journal of Plant Nutrition, 25(9), 1933–1940. https://doi.org/10.1081/PLN-120013285

Solymosi, K., Bertrand, M. (2012). Soil metals, chloroplasts, and secure crop production: a review. Agronomy for Sustainable Development, 32, 245–272. https://doi.org/10.1007/s13593-011-0019-z

Strasser, R.J., Srivastava, A., Govindjee (1995). Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochemistry and Photobiology, 61, 32–41. https://doi.org/10.1111/j.1751-1097.1995.tb09240.x

Strasser, R.J., Srivastava, A., Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples, probing photosynthesis: Mechanism, Regulation and Adaptation. In: M. Yunus, U. Pathre, P. Mohanty (eds.), Probing photosynthesis, London: Taylor and Francis, pp. 443–480.

Yanai, J., Fang-Jie, Z., McGrath, S.P., Kosaki, T. (2006). Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environmental Pollution, 139, 167–174. https://doi.org/10.1016/j.envpol.2005.03.01

Yavakumar, K., Jaleel, Ch.A., Vijarengan, P. (2007). Changes growth, biochemical constituents, and antioxidant potentials in radish (Raphanus sativus L.) under cobalt stress. Turkish Journal of Biology, 31, 127–136.

Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17, 145–156. https://doi.org/10.1590/S1677-04202005000100012

Downloads

Published

2018-12-31

How to Cite

Konieczna, I., Rut, G., & Kliszcz, A. (2018). Photosynthetic activity of Daucus carota L. subsp. sativus (Hoffm.) Schübl. & G. Martens and Triticum aestivum L. in the presence of copper and vanadium ions. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 3(1), 70–79. https://doi.org/10.24917/25438832.3.5

Issue

Section

Experimental Biology