Environmental characteristics of the mining area affected by sulphide minerals and acidification (Banská Štiavnica, Slovakia)

Authors

  • Erika Remešicová Nábrežie armádneho generála L. Svobodu 5, 812 49 Bratislava 1 Bratislava, Slovakia
  • Peter Andráš Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
  • Radmila Kučerová Technical University Ostrava, Ostrava – Poruba, Czech Republic

DOI:

https://doi.org/10.24917/25438832.3.8

Keywords:

heavy metals, contamination, acidification, availability

Abstract

The area of Sedem Žien tailing pond and the nearby Šobov hydroquartzite quarry affected by mining activity were investigated by geochemical and mineralogical methods to determine the contaminating chemical compounds and study their availability. Degradation of the hydrothermal base mineralisation (galena, sphalerite, pyrite, pyrrhotite and chalcopyrite) and of fine-grained pyrite oxidation, which forms impregnations in hydroquartzite produce Acid Mine Drainage (AMD). The area is acidified and the country components (soil, rock, water) are contaminated mainly by Pb, Zn and Fe. The tailing pond dam forming soils show acid pH (2.28-3.25), whereas the soil on the tailing pond surface is close neutral pH (7.26). The leaching availability of the metals from the soil is up to 75%. The AMD from the hydroquartzite quarry is in comparison with those percolating the tailing pond sediments very acid (pH 2.71) and contains high concentration of metals (Fe 311 mg.L-1, Zn 1690 µg.L-1, Cu 890 µg.L-1, Pb 126 µg.L-1).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Act No. 220 Coll. on the Conservation and Use of Agricultural Land (2004). Zákon č. 220/2004 Z. z. O ochrane a využívaní poľnohospodárskej pôdy a o zmene zákona č. 245/2003 Z. z. o integrovanej prevencii a kontrole znečisťovania životného prostredia a o zmene a doplnení niektorých zákonov. [In Slovak]

Akcil A., Koldas S. (2006). Acid Mine Drainage (AMD): causes. treatment and case studies. Journal of Cleaner Production, 14, 1139–1145. https://doi.org/10.1016/j.jclepro.2004.09.006

Bell, F.G., Bullock, S.E.T., Halbichc, T.F.J., Lindsay, P. (2001). Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa. International Journal of Coal Geology, 45, 195–216. https://doi.org/10.1016/S0166-5162(00)00033-1

Bella, P., Gaál, Ľ., Grego. J. (2010). Hydrotermálne kvarcitové jaskyne v lome Šobov pri Banskej Štiavnici. Slovenský Kras – Acta Carsologica Slovaca, 48(10), 19–30. [In Slovak]

Burian, J., Slavkay, M., Štohl, J., Tőzsér, J., (1985). Metalogenéza neovulkanitov Slovenska. Bratislava: Alfa, 269. [In Slovak]

Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1702–1703. https://doi.org/10.1016/0012-821X(89)90042-3

Čurlík, J., Kolesár, M., Ďurža, O., Hiller, E. (2015). Dandelion (Taraxacum officinale) and agrimony (Agrimonia eupatoria) as indicators of geogenic contamination of flysch soils in Eastern Slovakia. Archives of Environmental Contamination and Toxicology, 69(2). https://doi.org/10.1007/s00244-015-0206-z

Ďurža, O. (2007). Využitie pôdnej magnetometrie pri štúdiu kontaminácie pôd ťažkými kovmi. Acta Environmentalica Universitatis Comenianae, 15(1), 5–15. [In Slovak]

Hladíková, J. (1988). Základy geochemie stabilních izotopů lehkých prvků. Brno: Univerzita Jana Evangelisty Purkině, 96. [In Czech]

Hoefs, J. (1987). Stable Isotope Geochemistry. Berlin Heidelberg: Springer-Verlag, 241.

Chaussidon, M., Albarede, F., Sheppard, S.M.F. (1989). Sulphur isotope variations in the mantle from iron microprobe analyses of micro-sulphide inclusions. Earth and Planetary Science Letters, 92, 144–156.

IAEA – International Atomic Energy Agency. Global network of isotops in precipitation. http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html

Jennings, S.R., Neumann, D.R., Blicker, P.S. (2008). Acid mine drainage and effects on fish health and ecology: a review. Montana, Bozeman: Reclamation Research Group Publication. MT.

Kantor, J. (1979). Izotopové zloženie síry zo sulfidických vzoriek rudného obvodu Banská Štiavnica. Bratislava: GÚDŠ, 181. [In Slovak]

Kaplan, I.R., Rittenberg, S.C. (1964). Microbial fractionation of sulphur isotopes. Journal of General Microbiology, 34, 195–212.

Koděra, M. (1963). Gezetzmässigkeiten der zonalen verteilung der mineralization an des subvulkanischen lagestätte Banská Štiavnica und Hodruša. Symp. – Problems Postmagmatic Ore Deposition I. Prag, 184–189. [In German]

Križáni, I., Andráš, P. (2008). Modelovanie perkolácie sedimentov háld a odkalísk banskoštiavnického rudného revíru. Mineralia Slovaca, 40, 59–72. [In Slovak]

Ledin, M., Pedersen, K. (1996). The environmental impact of mine wastes – Roles of microorganisms and their significance in treatment of mine wastes. Earth-Science Reviews, 41, 67–108.

Lottermoser, B.G. (2007). Mine wastes: characterization. treatment and environmental impacts. 2nd ed. London: Springer, 304.

Marqués, M.J., Martínez-Conde, E., Rovira, J.V., Ordóňez, S. (2011). Heavy metals pollutions of aquatic ecosystems in the vicinity of a recently closed undersround lead-zinc mine (Basque Country. Spain). Environmental Geology, 40, 1125–1137.

Masarovičová, M., Slávik. I., Kovalková. J. (2007). ZoD- 04 - 184 / 06. dod. 1/07. Kompletný monitoring odkalísk SR (časť 5). Bratislava: STU. [In Slovak]

McCarten, N. (1992). Community structure and habitat relations in a serpentine grasland in California. In: A.J.M. Baker, J. Proctor, R.D. Reeves (eds.), The vegetation of ultramafic serpentine soils. Proc. of the first international conference on serpentine ecology. University of California: Davis California, 207–211.

Mook, W.G. (2001). Environmental Isotopes in the environmental cycle. Technical Documents in Hydrology, 1(30), 280.

Moreno, L., Neretnieks, I. (2006). Long-term environmental impact of tailings deposits. Hydrometallurgy, 83, 176–183. https://doi.org/10.1016/j.hydromet.2006.03.052

Newman, L., Krouse, H.R., Grinenko, V.A. (1991). Suphur isotopic variations in the atmosphere. In: H.R. Krouse, V.A. Grinenko (eds.), Stable isotopes: Natural and Antropogenic Sulphur in the environment. Chichester: SCPE 43. John Wiley and Sons, 133–176.

Rollinson, H. (1998). Using geochemical data. Evaluation–Presentation–Interpretation. Singapore: Longma Publishers, 352.

Sakai, H., Casadevall, T.J., Moore, J.G. (1982). Chemistry and isotope rations of sulfur and volcanic gases at Kilauea volcano (Hawaii). Geochimica et Cosmochimica Acta, 46, 729–738. https://doi.org/10.1016/0016-7037(82)90024-2

Salomons, W. (1995). Environmental impact of metals derived from mining activities: processes. predictions. prevention. Heavy metal aspects of mining pollution and its remediation. Journal of Geochemical Exploration, 52(1/2), 5–23. https://doi.org/10.1016/0375-6742(94)00039-E

SAZP – Slovenská Agentúra Životného Prostredia. http://www.sazp.sk/public/index/go.php?id=1433 [In Slovak]

Sheppard, S.M.F. (1981). Stable isotope geochemistry of fluids. Physics and Chemistry of the Earth, 13/14, 419–445.

ŠGÚDŠ – Štátny geologický ústav Dionýza Štúra (2012). Využitie environmentálních izotopov v hydrogeológii. In: Geology.sk: Náhradné zdroje vody. Bratislava: http://www.geology.sk/nahradnezdrojevody/page.php?15 [In Slovak]

Šlauková, E., Bella, J. (2006). Izolácia baktérií rodu Acidithiobacillus z kyslých banských vôd zo skládky odvalov v Banskej Štiavnici-Šobov a ich charakterizácia. In: Ľ. Stašík, J. Činka, B. Antonická (eds.), Odpady 2006 – zborník prednášok z medzinárodnej konferencie (Spišská Nová Ves, 9. – 10. 11. 2006). Spišská Nová Ves: Geológia PaB, 247–250. [In Slovak]

Šottník, P. (2005). Pasívne čistenie kyslých banských vôd. Podporné materiály pre projektové vyučovanie. Zvyšovanie kvality odbornej prípravy v oblasti environmentálneho rizika odpadov ťažobného priemyslu. JPD 3 2005/1-052. Ministerstvo školstva SR. [In Slovak]

Taylor, H.P. (1974). The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 843–883. https://doi.org/10.2113/gsecongeo.69.6.843

Thornton, I. (1996). Impacts of mining on the environment; some local. regional and global issues. Applied Geochemistry, 11, 355–361. https://doi.org/10.1016/0883-2927(95)00064-X

Tipping, E., Rieuwerts, J., Pan, G., Ashmore, M.R., Lofts, S., Hill, M.T.R., Farago M., Thornton, I. (2003). The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environmental Pollution, 125(2), 213–225. https://doi.org/10.1016/S0269-7491(03)00058-7

Younger, P.L., Wolkersdorfer, Ch. (2004). Mining impacts on the fresh water environment: technical and managerial guidelines for catchment scale management. Mine Water and the Environment, 23(1), 2–80. https://doi.org/10.1007/s10230-004-0028-0

Downloads

Published

2018-12-31

How to Cite

Remešicová, E., Andráš, P., & Kučerová , R. (2018). Environmental characteristics of the mining area affected by sulphide minerals and acidification (Banská Štiavnica, Slovakia). Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 3(1), 103–122. https://doi.org/10.24917/25438832.3.8

Issue

Section

Ecology and Environmental Protection