A brief review of microbial induced corrosion research

Authors

  • Arkadiusz Gruca Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland

DOI:

https://doi.org/10.24917/25438832.3.12

Keywords:

bacteria, biofilm, inhibitors, mechanism, microbial induced corrosion

Abstract

Korozja to ogół procesów prowadzących do niszczenia materiałów. Jednym z typów korozji jest korozja powodowana działaniem mikroorganizmów. Tak zwana Biokorozja w znacznym stopniu przyczynia się do degradacji konstrukcji metalowych i betonowych. Niektóre elementy tych konstrukcji, w szczególności te wystawione na działanie wody słodkiej, słonej, ścieków albo ziemi są szczególnie narażone na destrukcyjny wpływ mikrobów. Korozja mikrobiologiczna w największym stopniu dotyka przemysłu naftowo-gazowego, transportu wodnego i instalacji sanitarnych. Niebagatelny problem stanowi także, powodowana przez bakterie znajdujące się w jamie ustnej, korozja implantów dentystycznych. Mimo, że mechanizmy powodujące biokorozję nie są dobrze znane, walka z tym zjawiskiem jest przedmiotem badań instytutów na całym świecie. Ważnym zagadnieniem jest również projektowanie materiałów o zwiększonej odporności na biokorozję. Celem tego artykułu jest podsumowanie dotychczasowego stanu wiedzy o zjawisku biokorozji, przybliżenie obecnie stosowanych metod jej zapobiegania, oraz omówienie procesów chemicznych i biologicznych stojących za korozją indukowaną przez mikroorganizmy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Alexander, M., Bertron, A., De Belie, N. (2013). Performance of cement-based materials in aggressive aqueous environments. 1st ed. Ghent: Springer. https://doi.org/10.1007/978-94-007-5413-3

Aribo, S., Olusegun, S.J., Ibhadiyi, L.J., Oyetunji, A., Folorunso, D.O. (2017). Green inhibitors for corrosion protection in acidizing oilfield environment. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24, 34–38. https://doi.org/10.1016/j.jaubas.2016.08.001

Bellige, S., Elias, L., Hegde, A.C (2015). Electrodeposition of Cu-Ni coatings for marine protection of mild steel. Innovations in Corrosion and Materials Science, 5(2), 127–131. https://doi.org/10.2174/235209490502151106195950

Błaszczyk, M.K. (2010). Mikrobiologia środowisk. Warszawa: Wydawnictwo PWN, pp. 93–134. [In Polish]

Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., Kahru, A. (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Archives of Toxicology, 87(7), 1181–1200. https://doi.org/10.1007/s00204-013-1079-4

Cayford, B.I., Jiang, G., Keller, J., Tyson, G., Bond, P.L. (2017). Comparison of microbial communities across sections of a corroding sewer pipe and the effects of wastewater flooding. Biofouling, 33(9), 780–792. https://doi.org/10.1080/08927014.2017.1369050

Dec, W., Mosiałek, M., Socha, R.P., Jaworska-Kik, M., Simka, W., Michalska, J. (2016). The effect of sulphate-reducing bacteria biofilm on passivity and development of pitting on 2205 duplex stainless steel. Electrochimica Acta, 212, 225–236. https://doi.org/10.1016/j.electacta.2016.07.043

Diaz, I., Pacha-Olivenza, M.Á., Tejero, R., Aniuta, E., González-Martín, M.L., Escudero, M.L., Garcia-Alonso, M.C. (2018). Corrosion behavior of surface modifications on titanium dental implant. In situ bacteria monitoring by electrochemical techniques. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 106(3), 997–1009. https://doi.org/10.1002/jbm.b.33906

Goyns, A.M., Alexander, M. (2014). Performance of various concretes in the Virginia experimental sewer over 20 years. Calcium Aluminates, Balkema, 573–584.

Grengg, C., Mittermayr, F., Ukrainczyk, N., Koraimann, G., Kienesberger, S., Dietzel, M. (2018). Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review. Water Research, 134(1), 341–352. https://doi.org/10.1016/j.watres.2018.01.043

Gu, J.D. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International Biodeterioration & Biodegradation, 52(2), 69–91. https://doi.org/10.1016/S0964-8305(02)00177-4

Gu, J.D., Ford, T.E., Mitchellm, R. (2011). Microbiological corrosion of concrete. Uhlig’s Corrosion Handbook, John Wiley & Sons, 451–460.

Gu, T. (2012). Can acid producing bacteria be responsible for very fast MIC pitting. Corrosion 2012, p. C2012-0001214, Salt Lake City: UT.

Gu, T., Zhao, K., Nešic, S. (2009). A practical mechanistic model for MIC based on a Biocatalytic Cathodic Sulfate Reduction (BCSR) theory. Corrosion 2009, p. 09390, Atlanta: GA.

Gutierrez, O., Sudarjanto, G., Ren, G., Ganigué, R., Jiang, G., Yuan, Z. (2014). Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems. Water Research, 48, 569–578. https://doi.org/10.1016/j.watres.2013.10.021

Hajipour, M.J., Fromm, K.M., Ashkarran, A.A., Jimenez de Aberasturi, D., de Larramendi, I.R., Rojo, T., Serpooshan, V., Parak, W.J., Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004

Hamilton, W.A. (1985). Sulphate-reducing bacteria and anaerobic corrosion. Annual Review of Microbiology, 39, 195–217. https://doi.org/10.1146/annurev.mi.39.100185.001211

Herisson, J., Gueguen-Minerbe, M., Van Hullebusch, E.D., Chaussadent, T. (2014). Biogenic corrosion mechanism: Study of parameters explaining calcium aluminate cement durability. Calcium Aluminates, Balkema, 645–58.

Herisson, J., Guéguen-Minerbe, M., van Hullebusch, E.D., Chaussadent, T. (2017). Influence of the binder on the behaviour of mortars exposed to H2S in sewer networks: a long-term durability study. Materials and Structures, 50(1), 8. https://doi.org/10.1617/s11527-016-0919-0

Hunsucker, K.Z., Vora, G.J., Hunsucker, J.T., Gardner, H., Leary, D.H., Kim, S., Lin, B., Swain, G. (2018). Biofilm community structure and the associated drag penalties of a groomed fouling release ship hull coating. Biofouling, 34(2), 162–172. https://doi.org/10.1080/08927014.2017.1417395

Javed, M.A., Stoddart, P.R., Wade, S.A. (2015). Corrosion of carbon steel by sulphate reducing bacteria: initial attachment and the role of ferrous ions. Corrosion Science, 93, 48–57. https://doi.org/10.1016/j.corsci.2015.01.006

Jia, R., Yang, D., Xu, D., Gu, T. (2017). Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 118, 38–46. https://doi.org/10.1016/j.bioelechem.2017.06.013

Jia, R., Yang, D., Xu, J., Xu, D., Gu, T. (2017). Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corrosion Science, 127, 1–9. https://doi.org/10.1016/j.corsci.2017.08.007

Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H, Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H., Cho,M.H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95–101. https://doi.org/10.1016/j.nano.2006.12.001

Koch, J.H., Brongers, M.P.H., Thompson, N.G., Virmani, Y.P., Payer, J.H. (2002). Corrosion cost and preventive strategies in the United States. Federal Highway Administration, Washington, DC, Report No. FHWA-RD 01-156.

Lee, J.S., Ray, R.I., Little, B.J., Duncan, K.E., Oldham, A.L., Davidova, I.A., Suflita, J.M. (2012). Sulphide production and corrosion in seawaters during exposure to FAME diesel. Biofouling, 28(5), 465–478. https://doi.org/10.1080/08927014.2012.687723

Li, L., Li, S., Qu, Q., Zuo, L., He, Y., Zhu, B., Li, C. (2017). Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva. Materials, 10(3), 255. https://doi.org/10.3390/ma10030255

Li, Q., Wang, J., Xing, X., Hu, W. (2018). Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions. Bioelectrochemistry, 122, 40–50. https://doi.org/10.1016/j.bioelechem.2018.03.003

Li, X., Duan, J., Xiao, H., Li, Y., Liu, H., Guan, F., Zhai, X. (2017a). Analysis of bacterial community composition of corroded steel immersed in Sanya and Xiamen Seawaters in China via method of illumina MiSeq Sequencing. Frontiers in Microbiology, 8, 1737. https://doi.org/10.3389/fmicb.2017.01737

Li, X., Jiang, G., Kappler, U., Bond, P. (2017b). The ecology of acidophilic microorganisms in the corroding concrete sewer environment. Frontiers in Microbiology, 8, 683. https://doi.org/10.3389/fmicb.2017.00683

Li, Y., Xu, D., Chen, C., Li, X., Jia, R., Zhang, D., Sand, W., Wang, F., Gu, T. (2018). Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review. Journal of Materials Science & Technology, 34(10), 1713–1718. https://doi.org/10.1016/j.jmst.2018.02.023

Liang, R., Aydin, E., Le Borgne, S., Sunner, J., Duncan, K.E., Suflita, J.M. (2017). Anaerobic biodegradation of biofuels and their impact on the corrosion of a Cu-Ni alloy in marine environments. Chemosphere, 195, 427–436. https://doi.org/10.1016/j.chemosphere.2017.12.082

Liu, H., Gu, T., Zhang, G., Wang, W., Dong, S., Cheng, Y., Liu, H. (2016). Corrosion inhibition of carbon steel in CO 2 -containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors. Corrosion Science, 105, 149–160. https://doi.org/10.1016/j.corsci.2016.01.012

Long, M., Rack, H.J. (1998). Titanium alloys in total joint replacement – A materials science perspective. Biomaterials, 19(18), 1621–1639. https://doi.org/10.1016/S0142-9612(97)00146-4

Lv, B., Cui, Y., Tian, W., Feng, D. (2017). Composition and influencing factors of bacterial communities in ballast tank sediments: Implications for ballast water and sediment management. Marine Environmental Research, 132, 14–22. https://doi.org/10.1016/j.marenvres.2017.10.005

Narenkumar, J., Parthipan, P., Madhavan, J., Murugan, K., Marpu, S.B., Suresh, A.K., Rajaskear, A. (2018). Bioengineered silver nanoparticles as potent anti-corrosive inhibitor for mild steel in cooling towers. Environmental science and pollution research international, 25(6), 5412–5420. https://doi.org/10.1007/s11356-017-0768-6

Narenkumar, J., Parthipan, P., Usha Raja Nanthini, A., Benelli, G., Murugan, K., Rajasekar, A. (2017). Ginger extract as green biocide to control microbial corrosion of mild steel. Three Biotech, 7(2), 133. https://doi.org/10.1007/s13205-017-0783-9

Narenkumar, J., Ramesh, N. & Rajasekar, A. (2018). Control of corrosive bacterial community by bronopol in industrial water system. Three Biotech, 8(1), 55. https://doi.org/10.1007/s13205-017-1071-4

Navarro, M., Michiardi, A., Casta~no, O., Planell, J.A. (2008). Biomaterials in orthopedics. Journal of the Royal Society Interface, 5(27), 1137–1158. https://doi.org/10.1098/rsif.2008.0151

Punniyakotti, P., Jayaraman, N., Punniyakotti, E., Parameswaran, S.P., Ayyakkannu, U.R.N., Akhil, A., Aruliah, R. (2017). Neem extract as a green inhibitor for microbiologically influenced corrosion of carbon steel API 5LX in a hypersaline environments. Journal of Molecular Liquids, 240, 121–127. https://doi.org/10.1016/j.molliq.2017.05.059

Raja, P.B., Sethuraman, M.G. (2008). Inhibitive effect of black pepper extract on the sulphuric acid corrosion of mild steel. Materials Letters, 62(17–18), 2977–2979. https://doi.org/10.1016/j.matlet.2008.01.087

Schultz, M.P., Bendick, J.A., Holm, E.R., Hertel, W.M. (2011). Economic impact of biofouling on a naval surface ship. Biofouling, 27, 87–98. https://doi.org/10.1080/08927014.2010.542809

Schweitzer, P.A.P.E. (2010). Fundamentals of corrosion – Mechanisms, Causes and Preventative Methods. CRC Press, p. 25.

Sharma, M.A.D., Liu, T., Pinnock, T., Cheng, F., Voordouw, G. (2017). Biocide-mediated corrosion of coiled tubing. Public Library of Science one, 12(7), e0181934. https://doi.org/10.1371/journal.pone.0181934

Sherar, B.W.A., Power, I.M., Keech, P.G., Mitlin, S., Southam, G., Shoesmith, D.W. (2011). Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion. Corrosion Science, 53(3), 955–960. https://doi.org/doi.org/10.1016/j.corsci.2010.11.027

Shuler, M.L., Kargi, F. (2002). Bioprocess engineering. New York: Prentice Hall.

Sondi, I., Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–182. https://doi.org/10.1016/j.jcis.2004.02.012

Souza, J.C.M., Mota, R.R.C., Sordi, M.B., Passoni, B.B., Benfatti, C.A.M., Magin, R.S. (2016). Biofilm formation on different materials used in oral rehabilitation. Brazilian Dental Journal, 27(2), 141–147. https://doi.org/10.1590/0103-6440201600625

Swain, G.W. (2010). The importance of ship hull coatings and maintenance as drivers for environmental sustainability. Proceedings of Ship Design and Operation for Environmental Sustainability, London: Royal Institute of Naval Architects – Ship Design and Operation for Environmental Sustainability – Papers, 55–62.

Thauer, R.K., Stackebrandt, E., Hamilton, W.A. (2007). Energy metabolism phylogeneticdiversity of sulphate-reducing bacteria, in: Sulphate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge: Cambridge University Press, pp. 1–27. https://doi.org/10.1017/CBO9780511541490.002

Videla, H.A. (1986). Corrosion of mild steel induced by sulfate-reducing bacteria. A study of passivity breakdown by biogenic sulphides. Texas: NACE-8 International Corrosion Conference Series, NACE International, Houston, 162–171.

Videla, H.A., Herrera, L.K., Edyvean, R.G.J. (2005). An updated overview of SRB induced corrosion and protection of carbon steel. Corrosion, NACE International, Paper No.488, Texas: Houston.

Vincke, E., Wanseele, E. Van, Monteny, J., Beeldens, A., Belie, N. De, Taerwe, L., Gemert, D. Van, Verstraete, W. (2002). Influence of polymer addition on biogenic sulfuric acid attack of concrete. International Biodeterioration & Biodegradation, 49(4), 283–292. https://doi.org/10.1016/S0964-8305(02)00055-0

Wan, H., Song, D., Zhang, D., Du, C., Xu, D., Liu, Z., Ding, D., Li, X. (2018). Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment. Bioelectrochemistry, 121, 18–26. https://doi.org/10.1016/j.bioelechem.2017.12.011

Wang, H., Ju, L.K., Castaneda, H., Cheng, G., Newby, B.M.Z. (2014). Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans. Corrosion Science, 89, 250–257. https://doi.org/10.1016/j.corsci.2014.09.005

World Health Organisation (2000). Hydrogen Sulfide, in: Air Quality Guidelines for Europe. Copenhagen, p. 7.

Xu, D., Gu, T. (2011). Bioenergetics Explains When and Why More Severe MIC Pitting by SRB Can Occur. Corrosion/2011, NACE International, PaperNo. 11426, Texas: Houston.

Xu, D., Li, Y., Gu, T. (2016). Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry, 110, 52–58. https://doi.org/10.1016/j.bioelechem.2016.03.003

Xu, D., Li, Y., Song, F., Gu, T. (2013). Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corrosion Science, 77, 385–390. https://doi.org/10.1016/j.corsci.2013.07.044

Yuan, L., Gao, T., He, H., Jiang, F.L., Liu, Y. (2017). Silver ion-induced mitochondrial dysfunction via a nonspecific pathway. Toxicology Research, 6(5), 621–630. https://doi.org/10.1039/C7TX00079K

Zhang, P., Xu, D., Li, Y., Yang, K., Gu, T. (2015). Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry, 101, 14–21. https://doi.org/10.1016/j.bioelechem.2014.06.010

Downloads

Published

2018-12-31

How to Cite

Gruca, A. (2018). A brief review of microbial induced corrosion research. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 3(1), 152–161. https://doi.org/10.24917/25438832.3.12

Issue

Section

Various