The influence of lead compounds on selected morphological features and the physiological processes of Zea mays L.
DOI:
https://doi.org/10.24917/25438832.6.4Keywords:
elongation growth, germination, masses, photosynthesis, transpirationAbstract
Soil contamination with heavy metals leads to the accumulation of significant amounts of these elements in plants and disrupts their growth and development. The current experiment investigated the effect of lead in the form of Pb(NO3)2 in water solutions of various percentages (0.1%, 1%, 3%) on the germination of maize grains (Zea mays L.), plant growth (fresh and dry mass ) and their photosynthetic activity. The experiment was performed on plants grown from grains germinated on lead solutions and on plants germinated in distilled water, and watered with lead solutions during growth. The negative influence of lead solutions on the germination capacity of grains was demonstrated. Regardless of the timing of lead application, maize elongation growth was clearly inhibited. Similar results were obtained for the masses of the examined plant organs. The rate of transpiration influenced the photosynthesis intensity and depended on the concentration of the lead solution. Along with the increase in lead concentrations a negative effect of lead on all the parameters tested was observed. In general, it can be concluded that only proper management of arable soils can limit the uptake of heavy metals by plants and thus improve their growth and development.
Downloads
Metrics
References
Abraham, L.K., Sridevi, R., Suresh, B., Damodharam, T. (2013). Effect of heavy metals (Cd, Pb, Cu) on seed germination of Arachis hypogeae. Asian Journal of Plant Science and Research, 3(1), 10–12.
Adekunle, I.M., Olorundare, O., Nwange, C. (2009). Assessments of lead levels and daily intakes from green leafy vegetables of southwest Nigeria. Nutrition and Food Science, 39, 413–422.
Ahmad, M.S.A., Ashraf, M., Tabassam, Q., Hussain, M., Firdous, H. (2011). Lead (Pb)-induced regulation of growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biological Trace Element Research, 144, 1229–1239. https://doi.org/10.1007/s12011-011-9099-5
Arnemo, J.M., Andersen, O., Stokke, S., Vernon, G.T., Krone, O., Pain, D.J., Mateo, R. (2016). Health and environmental risks from lead-based ammunition: science versus socio-Politics. EcoHealth, 13, 618–622. https://doi.org/10.1007/s10393-016-1177-x
Bigdeli, M., Seilsepour, M. (2008). Investigation of metals accumulation in some vegetables irrigated with waste water in Shahre Rey-Iran and toxicological implications. American-Eurasian Journal of Agricultural and Environmental Sciences, 4(1), 86–92.
Brewer, G.J. (2010). Risks of copper and iron toxicity during aging in humans. Chemical Research in Toxicology, 23(2), 319–326. https://doi.org/10.1021/tx900338d
Carocci, A., Catalano, A., Lauria, G., Sinicropi, M.S., Genchi, G. (2016). Lead toxicity, antioxidant defense and environment. In: F.A. Gunther, P. de Voogt (eds.), Reviews of environmental contamination and toxicology. Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews), vol 238. Switzerland: Springer, Cham. https://doi.org/10.1007/398_2015_5003
Ettler, V. (2016). Soil contamination near non-ferrous metal smelters: A review. Applied Geochemistry, 64, 56–74. https://doi.org/10.1016/j.apgeochem.2015.09.020
Greger, M. (2004). Metal availability, uptake, transport and accumulation in plants. In M.N.V. Prasad (ed.), Heavy metal stress in plants: from biomolecules to ecosystems. New York, USA: Springer, pp. 1–21. https://doi.org/10.1007/978-3-662-07743-6_1
Hong-Bo, S., Li-Ye, C., Cheng-Jiang, R., Hua, L., Dong-Gang, G., Wei-Xiang, L. (2010). Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Critical Reviews in Biotechnology, 30(1), 23–30. https://doi.org/10.3109/07388550903208057
Hou, D., O’Connor, D., Igalavithana, A.D., Alessi, D.S., Luo, J., Tsang, D.C.W., Sparks, D.L., Yamauchi, Y., Rinklebe, J., Ok., Y.S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth and Environment, 1, 366–381. https://doi.org/10.1038/s43017-020-0061-y
Iqbal, M.M., Murtaza, G., Naz, T., Niazi, N.K., Shakar, M., Wattoo, F.M., Omer Farooq, O., Ali, M., Hafeez-ur-Rehman, Afzal, Mehdi, S.M., Mahmood, A. (2017). Effects of lead salts on growth, chlorophyll contents and tissue concentration of rice genotypes. International Journal of Agriculture and Biology, 19, 69–76.
Jasiewicz, C. (1996). Wpływ ołowiu na plon i skład chemiczny pietruszki. Zeszyty Problemowe Postępów Nauk Rolniczych, 434, 787–792.
Jiao, W., Chen, W., Chang, A.C., Page, A.L. (2012). Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environmental Pollution, 168(1), 44–53. http:doi.org/10.1016/j.envpol.2012.03.052
Kabata-Pendias, A., Mukherjee, A.B. (2007). Trace elements from soil to human. Berlin-Heidelberg: Springer-Verlag.
Kabata-Pendias, A., Pendias, H. (2001). Biogeochemistry of trace elements (Biogeochemia pierwiastków śladowych). Warszawa: PWN. [In Polish]
Kachenko, A.G., Singh, B. (2006). Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollution, 169, 101–123.
Kodera, H., Nishioka, H., Muramatsu, Y., Terada, Y. (2008). Distribution of lead in lead-accumulating pteridophyte Blechnum niponicum, measured by synchrotron radiation micro X-ray fluorescence. Analytical Sciences, 24(24), 1545–1549. http:doi.org/10.2116/analsci.24.1545
Konieczna, I., Rut, G., Kliszcz, A. (2018a). Effect of copper and vanadium ions on morphology of carrot (Daucus carota L. subsp. sativus (Hoffm.) Schübl. & G. Martens) and wheat (Triticum aestivum L.) plants. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 3, 55–69. https://doi.org/10.24917/25438832.3.4
Konieczna, I., Rut, G., Kliszcz, A. (2018b). Photosynthetic activity of Daucus carota L. subsp. sativus (Hoffm.) Schübl. & G. Martens and Triticum aestivum L. in the presence of copper and vanadium ions. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 3, 70–79. https://doi.org/10.24917/25438832.3.5
Kranner, I., Colville, L. (2011). Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environmental and Experimental Botany, 72, 93–105. https://doi.org/10.1016/j.envexpbot.2010.05.005
Li, X.M., Bu, N., Li Y., Ma, L., Xin, S., Zhang, L. (2012). Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions. Journal of Hazardous Materials, 213–214(3), 55–61. http:doi.org/10.1016/j.jhazmat.2012.01.0522
Liu, T., Liu, S., Guan, H., Ma, L., Chen, Z., Gu, H., QU, L.-J. (2009). Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environmental and Experimental Botany, 67(2), 377–386. https://doi.org/10.1016/j.envexpbot.2009.03.016
Malar, S., Manikandan, R., Favas, P.J.C., Vikram, S., Sahi, S.E., Venkatachalam, P. (2014). Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: A potential plant for phytoremediation. Ecotoxicology and Environmental Safety, 108, 249–257. https://doi.org/10.1016/j.ecoenv.2014.05.018
Marcinek, J., Komisarek, J., Kazmierowski, C. (1995). Physical soil degradation of infensive farming hapludalfs and endoaquolls in Great Poland (Wielkopolska) (Degradacja fizyczna gleb płowych i czarnych ziem intensywnie użytkowanych rolniczo w Wielkopolsce). Zeszyty Problemowe Postępów Nauk Rolniczych, 418(1), 141–147. [In Polish]
Mominul Islam, A.K.M., Kato-Noguchi, H. (2012). Allelopathic potentiality of medicinal plant Leucas aspera. International Journal of Agricultural Sustainability, 4, 1–7.
Możdżeń, K., Barabasz-Krasny, B., Puła, J., Lepiarczyk, A. (2017). Influence of cadmium and zinc compounds on the early stages of radish (Raphanus sativus L. var. sativus) growth (Wpływ związków kadmu i cynku na wczesne etapy wzrostu rzodkiewki (Raphanus sativus L. var. sativus)). Fragmenta Agronomica, 34(2), 45–54. [In Polish]
Możdżeń, K., Rzepka, A. (2016). The role of seed coat during germination and growth of broad bean (Vicia faba L.) seeds in the presence of lead sulphate (Rola łupiny nasiennej podczas kiełkowania i wzrostu nasion bobu (Vicia faba L.) w obecności siarczanu ołowiu. Annales Universitatis Mariae Curie-Skłodowska. Sectio E, Agricultura, 71, 55–65. [In Polish]
Możdżeń, K., Wanic, T., Rut, G., Łaciak, T., Rzepka, A. (2017). Toxic effects of high copper content on physiological processes in Pinus sylvestris L. Photosynthetica, 55(1), 193–200. https://doi.org/10.1007/s11099-016-0229-3
Oliwa, J., Możdżeń K., Migdałek, G., Wanic, I., Bojarski, B., Rut, G., Rzepka, A. (2016). Physiological activity of cucumber (Cucumis sativus L.) in cadmium stress. In M.T. Grzesiak, A. Rzepka, T. Hura, S. Grzesiak (ed.), Plant functioning under environmental stress. Cracow: The F. Górski Institute of Plant Physiology: Polish Academy of Sciences, s. 95–104.
Pattee, O.H., Pain, D.J. (2002). Lead in the environment. In D.J. Hoffman, B.A. Rattner, G.A. Burton Jr., J. Cairns Jr. (eds.). Handbook of ecotoxicology. Boca Raton: CRC Press, pp.36.
Piechalak, A., Tomaszewska, B., Baralkiewicz, D., Malecka, A. (2002). Accumulation and detoxification of lead ions in legumes. Phytochemistry, 60, 153–162. http://doi.org./0.1016/S0031-9422(02)00067-5
Pourrut, B., Shahid, M., Dumat, C., Winterton, P., Pinelli, E. (2011). Lead uptake, toxicity, and detoxification in plants. Reviews of Environmental Contamination and Toxicology, 213, 113–136. http://doi.org/10.1007/978-1-4419-9860-6_4
Puła, J., Barabasz-Krasny, B., Lepiarczyk, A., Zandi, P., Możdżeń, K. (2019). Activity of the photosynthetic apparatus in Phaseolus vulgaris L. leaves under the cadmium stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(2), 405–411. http://doi.org/10.15835/nbha47111328
Reddy, A.M., Kumar, A.G., Jyothsnakumari, G., Thimmanaik, S., Sudhakar, C (2005). Lead induced changes in antioxidant metabolism of Horse gram (Macrotyloma uniflorum (Lam.) Verdc.) and Bengal gram (Cicer arietinum L.). Chemosphere, 60(1), 97–104. https://doi.org/10.1016/j.chemosphere.2004.11.092
Rodriguesa, A.A.Z., De Queiroz, M.E.L.R., Oliveira, A.F., Heleno, A.A.F.F., Zambolim, L., Freitasa, J.F., Morais, E.H.C. (2017). Pesticide residue removal in classic domestic processing of tomato and its effects on product quality. Journal of Environmental Science and Health. Part. B, 52, 1–8. https://doi.org/10.1080/03601234.2017.1359049
Saifullah, S.M., Zia-Ur-Rehman, M., Sabir, M., Ahmad, H.R. (2015). Phytoremediation of pb-contaminated soils using synthetic chelates. In K. Hakeem, M. Sabir, M. Ozturk, A. Murmet (eds.), Soil remediation and plants. San Diego: Elsevier, pp. 397–414. https://doi.org/10.1016/B978-0-12-799937-1.00014-0
Schreck, E., Laplanche, C., Le Guédard, M., Bessoule, J.-J., Austruy, A., Xiong, T., Foucault, Y., Dumat, C. (2013). Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure. Environmental Pollution, 179, 242–249. https://doi.org/10.1016/j.envpol.2013.04.024
Sengar, R.S., Gautam, M., Sengar, R.S., Garg, S.K., Sengar, K., Chaudhary, R. (2008). Lead stress effects on physiobiochemical activities of higher plants. Reviews of Environmental Contamination and Toxicology, 196, 73–93. http:/doi.org./10.1007/978-0-387-78444-1_3
Seregin, I.V., Ivanov, V.B. (2001). Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology, 48(4), 523–544
Shah, F.R., Ahmad, N., Masood, K.R., Peralta-Videa, J.R., Ahmad, F.D. (2010). Heavy metal toxicity in plants. In M. Ashraf, M. Ozturk, M.S.A. Ahmad (eds.), Plant adaptation and phytoremediation. New York: Springer, pp. 71–97.
Sharma, P., Dubey, R.S. (2005). Lead toxicity in plants. Brazil Journal of Plant Physiology, 17(1), 35–52. https://doi.org/10.1590/S1677-04202005000100004
Sharma, P., Dubey, R.S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1). https://doi.org/10.1590/S1677-04202005000100004
Singh, R., Tripathi, R.D., Dwivedi, S., Kumar, A., Trivedi, P.K., Chakrabarty, D. (2010). Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresource Technology, 101, 3025–3032. https://doi.org/10.1016/j.biortech.2009.12.031
Steiner, A.A. (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil, 15(2), 134–154.
Verbruggen, N., Hermans, C., Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 181(4), 759–776. http://doi.org/10.1111/j.1469-8137.2008.02748.x
Williams, L.E., Pittman, K.J., Hall, J. (2000). Emerging mechanisms for heavy metal transport in plants. Biochimica et Biophysica Acta-Biomembranes, 1465, 104–126. http://doi.org/10.1016/S0005-2736(00)00133-4
Yang, Y., Wei, X., Lu, J., You, J., Wang, W., Shi, R. (2010). Lead-induced phytotoxicity mechanism involved in seed germination and seedling growth of wheat (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 73, 1982–1987. https://doi.org/10.1016/j.ecoenv.2010.08.041
Zhou, J., Zhang, Z., Zhang, Y., Wei, Y., Jiang, Z. (2018). Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLoS One, 13(3), e0191139. https://dx.doi.org/10.1371%2Fjournal.pone.0191139
Zhuang, P., McBride, M.B., Xia, H., Li, N, Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine. South China Science Total Environment, 407, 1551–1561. https://doi.org/10.1016/j.scitotenv.2008.10.061