The influence of lead compounds on selected morphological features and the physiological processes of Zea mays L.


  • Elke Bloem Institute for Crop and Soil Science, Federal Research Centre for Cultivated Plants (JKI), Bundesallee 69, 38116 Braunschweig
  • Jowita Ciaranek Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Kraków, Poland



elongation growth, germination, masses, photosynthesis, transpiration


Soil contamination with heavy metals leads to the accumulation of significant amounts of these elements in plants and disrupts their growth and development. The current experiment investigated the effect of lead in the form of Pb(NO3)2 in water solutions of various percentages (0.1%, 1%, 3%) on the germination of maize grains (Zea mays L.), plant growth (fresh and dry mass ) and their photosynthetic activity. The experiment was performed on plants grown from grains germinated on lead solutions and on plants germinated in distilled water, and watered with lead solutions during growth. The negative influence of lead solutions on the germination capacity of grains was demonstrated. Regardless of the timing of lead application, maize elongation growth was clearly inhibited. Similar results were obtained for the masses of the examined plant organs. The rate of transpiration influenced the photosynthesis intensity and depended on the concentration of the lead solution. Along with the increase in lead concentrations a negative effect of lead on all the parameters tested was observed. In general, it can be concluded that only proper management of arable soils can limit the uptake of heavy metals by plants and thus improve their growth and development.


Download data is not yet available.


Metrics Loading ...


Abraham, L.K., Sridevi, R., Suresh, B., Damodharam, T. (2013). Effect of heavy metals (Cd, Pb, Cu) on seed germination of Arachis hypogeae. Asian Journal of Plant Science and Research, 3(1), 10–12.

Adekunle, I.M., Olorundare, O., Nwange, C. (2009). Assessments of lead levels and daily intakes from green leafy vegetables of southwest Nigeria. Nutrition and Food Science, 39, 413–422.

Ahmad, M.S.A., Ashraf, M., Tabassam, Q., Hussain, M., Firdous, H. (2011). Lead (Pb)-induced regulation of growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biological Trace Element Research, 144, 1229–1239.

Arnemo, J.M., Andersen, O., Stokke, S., Vernon, G.T., Krone, O., Pain, D.J., Mateo, R. (2016). Health and environmental risks from lead-based ammunition: science versus socio-Politics. EcoHealth, 13, 618–622.

Bigdeli, M., Seilsepour, M. (2008). Investigation of metals accumulation in some vegetables irrigated with waste water in Shahre Rey-Iran and toxicological implications. American-Eurasian Journal of Agricultural and Environmental Sciences, 4(1), 86–92.

Brewer, G.J. (2010). Risks of copper and iron toxicity during aging in humans. Chemical Research in Toxicology, 23(2), 319–326.

Carocci, A., Catalano, A., Lauria, G., Sinicropi, M.S., Genchi, G. (2016). Lead toxicity, antioxidant defense and environment. In: F.A. Gunther, P. de Voogt (eds.), Reviews of environmental contamination and toxicology. Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews), vol 238. Switzerland: Springer, Cham.

Ettler, V. (2016). Soil contamination near non-ferrous metal smelters: A review. Applied Geochemistry, 64, 56–74.

Greger, M. (2004). Metal availability, uptake, transport and accumulation in plants. In M.N.V. Prasad (ed.), Heavy metal stress in plants: from biomolecules to ecosystems. New York, USA: Springer, pp. 1–21.

Hong-Bo, S., Li-Ye, C., Cheng-Jiang, R., Hua, L., Dong-Gang, G., Wei-Xiang, L. (2010). Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Critical Reviews in Biotechnology, 30(1), 23–30.

Hou, D., O’Connor, D., Igalavithana, A.D., Alessi, D.S., Luo, J., Tsang, D.C.W., Sparks, D.L., Yamauchi, Y., Rinklebe, J., Ok., Y.S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth and Environment, 1, 366–381.

Iqbal, M.M., Murtaza, G., Naz, T., Niazi, N.K., Shakar, M., Wattoo, F.M., Omer Farooq, O., Ali, M., Hafeez-ur-Rehman, Afzal, Mehdi, S.M., Mahmood, A. (2017). Effects of lead salts on growth, chlorophyll contents and tissue concentration of rice genotypes. International Journal of Agriculture and Biology, 19, 69–76.

Jasiewicz, C. (1996). Wpływ ołowiu na plon i skład chemiczny pietruszki. Zeszyty Problemowe Postępów Nauk Rolniczych, 434, 787–792.

Jiao, W., Chen, W., Chang, A.C., Page, A.L. (2012). Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environmental Pollution, 168(1), 44–53.

Kabata-Pendias, A., Mukherjee, A.B. (2007). Trace elements from soil to human. Berlin-Heidelberg: Springer-Verlag.

Kabata-Pendias, A., Pendias, H. (2001). Biogeochemistry of trace elements (Biogeochemia pierwiastków śladowych). Warszawa: PWN. [In Polish]

Kachenko, A.G., Singh, B. (2006). Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollution, 169, 101–123.

Kodera, H., Nishioka, H., Muramatsu, Y., Terada, Y. (2008). Distribution of lead in lead-accumulating pteridophyte Blechnum niponicum, measured by synchrotron radiation micro X-ray fluorescence. Analytical Sciences, 24(24), 1545–1549.

Konieczna, I., Rut, G., Kliszcz, A. (2018a). Effect of copper and vanadium ions on morphology of carrot (Daucus carota L. subsp. sativus (Hoffm.) Schübl. & G. Martens) and wheat (Triticum aestivum L.) plants. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 3, 55–69.

Konieczna, I., Rut, G., Kliszcz, A. (2018b). Photosynthetic activity of Daucus carota L. subsp. sativus (Hoffm.) Schübl. & G. Martens and Triticum aestivum L. in the presence of copper and vanadium ions. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 3, 70–79.

Kranner, I., Colville, L. (2011). Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environmental and Experimental Botany, 72, 93–105.

Li, X.M., Bu, N., Li Y., Ma, L., Xin, S., Zhang, L. (2012). Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions. Journal of Hazardous Materials, 213–214(3), 55–61.

Liu, T., Liu, S., Guan, H., Ma, L., Chen, Z., Gu, H., QU, L.-J. (2009). Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environmental and Experimental Botany, 67(2), 377–386.

Malar, S., Manikandan, R., Favas, P.J.C., Vikram, S., Sahi, S.E., Venkatachalam, P. (2014). Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: A potential plant for phytoremediation. Ecotoxicology and Environmental Safety, 108, 249–257.

Marcinek, J., Komisarek, J., Kazmierowski, C. (1995). Physical soil degradation of infensive farming hapludalfs and endoaquolls in Great Poland (Wielkopolska) (Degradacja fizyczna gleb płowych i czarnych ziem intensywnie użytkowanych rolniczo w Wielkopolsce). Zeszyty Problemowe Postępów Nauk Rolniczych, 418(1), 141–147. [In Polish]

Mominul Islam, A.K.M., Kato-Noguchi, H. (2012). Allelopathic potentiality of medicinal plant Leucas aspera. International Journal of Agricultural Sustainability, 4, 1–7.

Możdżeń, K., Barabasz-Krasny, B., Puła, J., Lepiarczyk, A. (2017). Influence of cadmium and zinc compounds on the early stages of radish (Raphanus sativus L. var. sativus) growth (Wpływ związków kadmu i cynku na wczesne etapy wzrostu rzodkiewki (Raphanus sativus L. var. sativus)). Fragmenta Agronomica, 34(2), 45–54. [In Polish]

Możdżeń, K., Rzepka, A. (2016). The role of seed coat during germination and growth of broad bean (Vicia faba L.) seeds in the presence of lead sulphate (Rola łupiny nasiennej podczas kiełkowania i wzrostu nasion bobu (Vicia faba L.) w obecności siarczanu ołowiu. Annales Universitatis Mariae Curie-Skłodowska. Sectio E, Agricultura, 71, 55–65. [In Polish]

Możdżeń, K., Wanic, T., Rut, G., Łaciak, T., Rzepka, A. (2017). Toxic effects of high copper content on physiological processes in Pinus sylvestris L. Photosynthetica, 55(1), 193–200.

Oliwa, J., Możdżeń K., Migdałek, G., Wanic, I., Bojarski, B., Rut, G., Rzepka, A. (2016). Physiological activity of cucumber (Cucumis sativus L.) in cadmium stress. In M.T. Grzesiak, A. Rzepka, T. Hura, S. Grzesiak (ed.), Plant functioning under environmental stress. Cracow: The F. Górski Institute of Plant Physiology: Polish Academy of Sciences, s. 95–104.

Pattee, O.H., Pain, D.J. (2002). Lead in the environment. In D.J. Hoffman, B.A. Rattner, G.A. Burton Jr., J. Cairns Jr. (eds.). Handbook of ecotoxicology. Boca Raton: CRC Press, pp.36.

Piechalak, A., Tomaszewska, B., Baralkiewicz, D., Malecka, A. (2002). Accumulation and detoxification of lead ions in legumes. Phytochemistry, 60, 153–162.

Pourrut, B., Shahid, M., Dumat, C., Winterton, P., Pinelli, E. (2011). Lead uptake, toxicity, and detoxification in plants. Reviews of Environmental Contamination and Toxicology, 213, 113–136.

Puła, J., Barabasz-Krasny, B., Lepiarczyk, A., Zandi, P., Możdżeń, K. (2019). Activity of the photosynthetic apparatus in Phaseolus vulgaris L. leaves under the cadmium stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(2), 405–411.

Reddy, A.M., Kumar, A.G., Jyothsnakumari, G., Thimmanaik, S., Sudhakar, C (2005). Lead induced changes in antioxidant metabolism of Horse gram (Macrotyloma uniflorum (Lam.) Verdc.) and Bengal gram (Cicer arietinum L.). Chemosphere, 60(1), 97–104.

Rodriguesa, A.A.Z., De Queiroz, M.E.L.R., Oliveira, A.F., Heleno, A.A.F.F., Zambolim, L., Freitasa, J.F., Morais, E.H.C. (2017). Pesticide residue removal in classic domestic processing of tomato and its effects on product quality. Journal of Environmental Science and Health. Part. B, 52, 1–8.

Saifullah, S.M., Zia-Ur-Rehman, M., Sabir, M., Ahmad, H.R. (2015). Phytoremediation of pb-contaminated soils using synthetic chelates. In K. Hakeem, M. Sabir, M. Ozturk, A. Murmet (eds.), Soil remediation and plants. San Diego: Elsevier, pp. 397–414.

Schreck, E., Laplanche, C., Le Guédard, M., Bessoule, J.-J., Austruy, A., Xiong, T., Foucault, Y., Dumat, C. (2013). Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure. Environmental Pollution, 179, 242–249.

Sengar, R.S., Gautam, M., Sengar, R.S., Garg, S.K., Sengar, K., Chaudhary, R. (2008). Lead stress effects on physiobiochemical activities of higher plants. Reviews of Environmental Contamination and Toxicology, 196, 73–93. http:/

Seregin, I.V., Ivanov, V.B. (2001). Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology, 48(4), 523–544

Shah, F.R., Ahmad, N., Masood, K.R., Peralta-Videa, J.R., Ahmad, F.D. (2010). Heavy metal toxicity in plants. In M. Ashraf, M. Ozturk, M.S.A. Ahmad (eds.), Plant adaptation and phytoremediation. New York: Springer, pp. 71–97.

Sharma, P., Dubey, R.S. (2005). Lead toxicity in plants. Brazil Journal of Plant Physiology, 17(1), 35–52.

Sharma, P., Dubey, R.S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1).

Singh, R., Tripathi, R.D., Dwivedi, S., Kumar, A., Trivedi, P.K., Chakrabarty, D. (2010). Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresource Technology, 101, 3025–3032.

Steiner, A.A. (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil, 15(2), 134–154.

Verbruggen, N., Hermans, C., Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 181(4), 759–776.

Williams, L.E., Pittman, K.J., Hall, J. (2000). Emerging mechanisms for heavy metal transport in plants. Biochimica et Biophysica Acta-Biomembranes, 1465, 104–126.

Yang, Y., Wei, X., Lu, J., You, J., Wang, W., Shi, R. (2010). Lead-induced phytotoxicity mechanism involved in seed germination and seedling growth of wheat (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 73, 1982–1987.

Zhou, J., Zhang, Z., Zhang, Y., Wei, Y., Jiang, Z. (2018). Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLoS One, 13(3), e0191139.

Zhuang, P., McBride, M.B., Xia, H., Li, N, Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine. South China Science Total Environment, 407, 1551–1561.



2021-11-04 — Updated on 2021-11-19

How to Cite

Bloem, E., & Ciaranek, J. (2021). The influence of lead compounds on selected morphological features and the physiological processes of Zea mays L. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 6, 63–80.



Experimental Biology