Bioinformatics Meets AI: Transforming Big Data into Breakthroughs in Biotechnology
Keywords:
artificial intelligence, big data, bioinformatics, biotechnology innovation, computational biologyAbstract
The convergence of bioinformatics and artificial intelligence (AI) is revolutionizing the biotechnology landscape, transforming biological big data into actionable insights and groundbreaking innovations. Bioinformatics, with its ability to manage and analyze massive datasets from genomics, proteomics, and systems biology, faces challenges of complexity and scale. AI's advanced techniques—machine learning, deep learning, and natural language processing—provide unprecedented tools for deciphering patterns, making predictions, and driving automation. This synergy has catalyzed remarkable progress in precision medicine, drug discovery, gene editing, and synthetic biology, heralding a new era of data-driven breakthroughs. This review explores the foundations, transformative applications, and recent breakthroughs at the intersection of bioinformatics and AI, while addressing challenges and envisioning a future where interdisciplinary collaboration unlocks the full potential of this powerful partnership.
Downloads
References
Aasen, D., Aghaee, M., Alam, Z., Andrzejczuk, M., Antipov, A., Astafev, M., Avilovas, L., Barzegar, A., Bauer, B., Becker, J., Bello-Rivas, J. M., Bhaskar, U., Bocharov, A., Boddapati, S., Bohn, D., Bommer, J., Bonderson, P., Borovsky, J., Bourdet, L., . Zimmerman, A. (2025). Roadmap to fault tolerant quantum computation using topological qubit arrays. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2502.12252
Abbasi, A. F., Asim, M. N., & Dengel, A. (2025). Transitioning from wet lab to artificial intelligence: a systematic review of AI predictors in CRISPR. Journal of translational medicine, 23(1), 153. https://doi.org/10.1186/s12967-024-06013-w
Ali, N. H. (2023). Quantum computing and AI in healthcare: Accelerating complex biological simulations, genomic data processing, and drug discovery innovations. World Journal of Advanced Research and Reviews, 20(2), 1466–1484. https://doi.org/10.30574/wjarr.2023.20.2.2325
Aljabali, A. A., El-Tanani, M., & Tambuwala, M. M. (2024). Principles of CRISPR-Cas9 technology: Advancements in genome editing and emerging trends in drug delivery. Journal of Drug Delivery Science and Technology, 92, 105338. https://doi.org/10.1016/j.jddst.2024.105338
Al-Kateeb, Z. N., & Abdullah, D. B. (2024). Unlocking the potential: synergizing IoT, cloud computing, and big data for a bright future. Iraqi Journal for Computer Science and Mathematics, 5(3). https://doi.org/10.52866/ijcsm.2024.05.03.001
Alm, C. O. (2024). Centering Humans in Artificial Intelligence. Proceedings of the AAAI Symposium Series, 3(1), 2–3. https://doi.org/10.1609/aaaiss.v3i1.31170
Amaan, A., Prekshi, G., & Prachi, S. (2024). Unlocking the transformative power of synthetic biology. Archives of Biotechnology and Biomedicine, 8(1), 009–016. https://doi.org/10.29328/journal.abb.1001039
Aradhya, S., Facio, F. M., Metz, H., Manders, T., Colavin, A., Kobayashi, Y., Nykamp, K., Johnson, B., & Nussbaum, R. L. (2023). Applications of artificial intelligence in clinical laboratory genomics. American journal of medical genetics. Part C, Seminars in medical genetics, 193(3), e32057. https://doi.org/10.1002/ajmg.c.32057
Arjmand, B., Hamidpour, S. K., Tayanloo-Beik, A., Goodarzi, P., Aghayan, H. R., Adibi, H., & Larijani, B. (2022). Machine Learning: A New Prospect in Multi-Omics Data Analysis of Cancer. Frontiers in genetics, 13, 824451. https://doi.org/10.3389/fgene.2022.824451
Arshad, S., Arshad, J., Khan, M. M., & Parkinson, S. (2021). Analysis of security and privacy challenges for DNA-genomics applications and databases. Journal of Biomedical Informatics, 119, 103815. https://doi.org/10.1016/j.jbi.2021.103815
Ayyagiri, N. A., Aggarwal, N. A., & Jain, N. S. (2024). Enhancing DNA Sequencing Workflow with AI-Driven Analytics. International Journal for Research Publication and Seminars, 15(3), 203–216. https://doi.org/10.36676/jrps.v15.i3.1484
Badrulhisham, F., Pogatzki-Zahn, E., Segelcke, D., Spisak, T., & Vollert, J. (2023). Machine learning and artificial intelligence in neuroscience: A primer for researchers. Brain Behavior and Immunity, 115, 470–479. https://doi.org/10.1016/j.bbi.2023.11.005
Bagabir, S. A., Ibrahim, N. K., Bagabir, H. A., & Ateeq, R. H. (2022). Covid-19 and Artificial Intelligence: Genome sequencing, drug development and vaccine discovery. Journal of Infection and Public Health, 15(2), 289–296. https://doi.org/10.1016/j.jiph.2022.01.011
Bhatnagar, R., Sardar, S., Beheshti, M., & Podichetty, J. T. (2022). How can natural language processing help model informed drug development?: a review. JAMIA open, 5(2), ooac043. https://doi.org/10.1093/jamiaopen/ooac043
Brancato, V., Esposito, G., Coppola, L., Cavaliere, C., Mirabelli, P., Scapicchio, C., Borgheresi, R., Neri, E., Salvatore, M., & Aiello, M. (2024). Standardizing digital biobanks: integrating imaging, genomic, and clinical data for precision medicine. Journal of translational medicine, 22(1), 136. https://doi.org/10.1186/s12967-024-04891-8
Brandes, N., Goldman, G., Wang, C. H., Ye, C. J., & Ntranos, V. (2023). Genome-wide prediction of disease variant effects with a deep protein language model. Nature Genetics, 55(9), 1512–1522. https://doi.org/10.1038/s41588-023-01465-0
Carini, C., & Seyhan, A. A. (2024). Tribulations and future opportunities for artificial intelligence in precision medicine. Journal of translational medicine, 22(1), 411. https://doi.org/10.1186/s12967-024-05067-0
Chen, C., Wang, J., Pan, D., Wang, X., Xu, Y., Yan, J., Wang, L., Yang, X., Yang, M., & Liu, G. P. (2023). Applications of multi-omics analysis in human diseases. MedComm, 4(4), e315. https://doi.org/10.1002/mco2.315
Chen, Q., Leaman, R., Allot, A., Luo, L., Wei, C., Yan, S., & Lu, Z. (2021). Artificial Intelligence in Action: Addressing the COVID-19 Pandemic with Natural Language Processing. Annual Review of Biomedical Data Science, 4(1), 313–339. https://doi.org/10.1146/annurev-biodatasci-021821-061045
Chen, Y., Hsiao, T., Lin, C., & Fann, Y. C. (2025). Unlocking precision medicine: clinical applications of integrating health records, genetics, and immunology through artificial intelligence. Journal of Biomedical Science, 32(1). https://doi.org/10.1186/s12929-024-01110-w
Chen, Z., Chen, C., Yang, G., He, X., Chi, X., Zeng, Z., & Chen, X. (2024). Research integrity in the era of artificial intelligence: Challenges and responses. Medicine, 103(27), e38811. https://doi.org/10.1097/MD.0000000000038811
Collins, C., Dennehy, D., Conboy, K., & Mikalef, P. (2021). Artificial intelligence in information systems research: A systematic literature review and research agenda. International Journal of Information Management, 60, 102383. https://doi.org/10.1016/j.ijinfomgt.2021.102383
Cross, J. L., Choma, M. A., & Onofrey, J. A. (2024). Bias in medical AI: Implications for clinical decision-making. PLOS digital health, 3(11), e0000651. https://doi.org/10.1371/journal.pdig.0000651
Datta, S. D., Islam, M., Sobuz, M. H. R., Ahmed, S., & Kar, M. (2024). Artificial intelligence and machine learning applications in the project lifecycle of the construction industry: A comprehensive review. Heliyon, 10(5), e26888. https://doi.org/10.1016/j.heliyon.2024.e26888
Desai, D., Kantliwala, S. V., Vybhavi, J., Ravi, R., Patel, H., & Patel, J. (2024). Review of AlphaFold 3: Transformative Advances in Drug Design and Therapeutics. Cureus, 16(7), e63646. https://doi.org/10.7759/cureus.63646
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., . . . Wright, R. (2023). Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642
Feretzakis, G., Papaspyridis, K., Gkoulalas-Divanis, A., & Verykios, V. S. (2024). Privacy-Preserving techniques in generative AI and large language Models: A Narrative review. Information, 15(11), 697. https://doi.org/10.3390/info15110697
Ferrara, E. (2023). Fairness and Bias in Artificial intelligence: A brief survey of sources, impacts, and mitigation strategies. Sci, 6(1), 3. https://doi.org/10.3390/sci6010003
Ford, E., Pillinger, S., Stewart, R., Jones, K., Roberts, A., Casey, A., Goddard, K., & Nenadic, G. (2025). What is the patient re-identification risk from using de-identified clinical free text data for health research? AI And Ethics. https://doi.org/10.1007/s43681-025-00681-0
Franklin, G., Stephens, R., Piracha, M., Tiosano, S., Lehouillier, F., Koppel, R., & Elkin, P. L. (2024). The Sociodemographic Biases in Machine Learning Algorithms: A Biomedical Informatics Perspective. Life (Basel, Switzerland), 14(6), 652. https://doi.org/10.3390/life14060652
Fu, C., & Chen, Q. (2025). The future of pharmaceuticals: Artificial intelligence in drug discovery and development. Journal of Pharmaceutical Analysis, 101248. https://doi.org/10.1016/j.jpha.2025.101248
Gabaldón-Figueira, J. C., Martinez-Peinado, N., Escabia, E., Ros-Lucas, A., Chatelain, E., Scandale, I., Gascon, J., Pinazo, M. J., & Alonso-Padilla, J. (2023). State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation. Research and reports in tropical medicine, 14, 1–19. https://doi.org/10.2147/RRTM.S415273
Gill, S. S., & Buyya, R. (2024). Transforming Research with Quantum Computing. Journal of Economy and Technology. https://doi.org/10.1016/j.ject.2024.07.001
Holthouse, R., Owens, S., & Bhunia, S. (2025). The 23andMe Data Breach: Analyzing credential stuffing attacks, security vulnerabilities, and mitigation strategies. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2502.04303
Huo, D., & Wang, X. (2024). A new era in healthcare: The integration of artificial intelligence and microbial. Medicine in Novel Technology and Devices, 23, 100319. https://doi.org/10.1016/j.medntd.2024.100319
Jamarani, A., Haddadi, S., Sarvizadeh, R., Kashani, M. H., Akbari, M., & Moradi, S. (2024). Big data and predictive analytics: A sytematic review of applications. Artificial Intelligence Review, 57(7). https://doi.org/10.1007/s10462-024-10811-5
Jamialahmadi, H., Khalili-Tanha, G., Nazari, E., & Rezaei-Tavirani, M. (2024). Artificial intelligence and bioinformatics: a journey from traditional techniques to smart approaches. Gastroenterology and hepatology from bed to bench, 17(3), 241–252. https://doi.org/10.22037/ghfbb.v17i3.2977
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
Khalid, N., Qayyum, A., Bilal, M., Al-Fuqaha, A., & Qadir, J. (2023). Privacy-preserving artificial intelligence in healthcare: Techniques and applications. Computers in Biology and Medicine, 158, 106848. https://doi.org/10.1016/j.compbiomed.2023.106848
Kumar, P., Paul, R. K., Roy, H. S., Yeasin, M., Ajit, & Paul, A. K. (2024). Big Data Analysis in Computational Biology and Bioinformatics. Methods in molecular biology (Clifton, N.J.), 2719, 181–197. https://doi.org/10.1007/978-1-0716-3461-5_11
Larabi-Marie-Sainte, S., Aburahmah, L., Almohaini, R., & Saba, T. (2019). Current Techniques for Diabetes Prediction: Review and Case Study. Applied Sciences, 9(21), 4604. https://doi.org/10.3390/app9214604
Lebatteux, D., Soudeyns, H., Boucoiran, I., Gantt, S., & Diallo, A. B. (2024). Machine learning-based approach KEVOLVE efficiently identifies SARS-CoV-2 variant-specific genomic signatures. PloS one, 19(1), e0296627. https://doi.org/10.1371/journal.pone.0296627
Li, M., Xu, P., Hu, J., Tang, Z., & Yang, G. (2025). From challenges and pitfalls to recommendations and opportunities: Implementing federated learning in healthcare. Medical Image Analysis, 101, 103497. https://doi.org/10.1016/j.media.2025.103497
Liao, J., Li, X., Gan, Y., Han, S., Rong, P., Wang, W., Li, W., & Zhou, L. (2023). Artificial intelligence assists precision medicine in cancer treatment. Frontiers in oncology, 12, 998222. https://doi.org/10.3389/fonc.2022.998222
Liu, Z., Chen, X., Carter, W., Moruf, A., Komatsu, T. E., Pahwa, S., Chan-Tack, K., Snyder, K., Petrick, N., Cha, K., Lal-Nag, M., Hatim, Q., Thakkar, S., Lin, Y., Huang, R., Wang, D., Patterson, T. A., & Tong, W. (2022). AI-powered drug repurposing for developing COVID-19 treatments. Reference Module in Biomedical Sciences, B978-0-12-824010-6.00005-8. https://doi.org/10.1016/B978-0-12-824010-6.00005-8
Lu, Y., Sigov, A., Ratkin, L., Ivanov, L. A., & Zuo, M. (2023). Quantum computing and industrial information integration: A review. Journal of Industrial Information Integration, 35, 100511. https://doi.org/10.1016/j.jii.2023.100511
Memon, Q. A., Ahmad, M. A., & Pecht, M. (2024). Quantum Computing: Navigating the future of computation, challenges, and technological breakthroughs. Quantum Reports, 6(4), 627–663. https://doi.org/10.3390/quantum6040039
Mohseni, P., & Ghorbani, A. (2024). Exploring the synergy of artificial intelligence in microbiology: Advancements, challenges, and future prospects. Deleted Journal, 1, 100005. https://doi.org/10.1016/j.csbr.2024.100005
Munawar, H. S., Ullah, F., Qayyum, S., & Shahzad, D. (2022). Big data in construction: current applications and future opportunities. Big Data and Cognitive Computing, 6(1), 18. https://doi.org/10.3390/bdcc6010018
Nazer, L. H., Zatarah, R., Waldrip, S., Ke, J. X. C., Moukheiber, M., Khanna, A. K., Hicklen, R. S., Moukheiber, L., Moukheiber, D., Ma, H., & Mathur, P. (2023). Bias in artificial intelligence algorithms and recommendations for mitigation. PLOS digital health, 2(6), e0000278. https://doi.org/10.1371/journal.pdig.0000278
Ng, S., Masarone, S., Watson, D., & Barnes, M. R. (2023). The benefits and pitfalls of machine learning for biomarker discovery. Cell and tissue research, 394(1), 17–31. https://doi.org/10.1007/s00441-023-03816-z
Niazi S. K. (2023). The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives. Drug design, development and therapy, 17, 2691–2725. https://doi.org/10.2147/DDDT.S424991
Nouri Nojadeh, J., Bildiren Eryilmaz, N. S., & Ergüder, B. I. (2023). CRISPR/Cas9 genome editing for neurodegenerative diseases. EXCLI journal, 22, 567–582. https://doi.org/10.17179/excli2023-6155
Nussinov, R., Zhang, M., Liu, Y., & Jang, H. (2022). AlphaFold, Artificial Intelligence (AI), and Allostery. The journal of physical chemistry. B, 126(34), 6372–6383. https://doi.org/10.1021/acs.jpcb.2c04346
Olawade, D. B., Teke, J., Fapohunda, O., Weerasinghe, K., Usman, S. O., Ige, A. O., & David-Olawade, A. C. (2024). Leveraging artificial intelligence in vaccine development: A narrative review. Journal of Microbiological Methods, 224, 106998. https://doi.org/10.1016/j.mimet.2024.106998
Pal, S., Bhattacharya, M., Lee, S., & Chakraborty, C. (2023). Quantum Computing in the Next-Generation Computational Biology Landscape: From protein folding to molecular Dynamics. Molecular Biotechnology, 66(2), 163–178. https://doi.org/10.1007/s12033-023-00765-4
Patel, A. U., Gu, Q., Esper, R., Maeser, D., & Maeser, N. (2024). The crucial role of interdisciplinary conferences in advancing explainable AI in healthcare. BioMedInformatics, 4(2), 1363–1383. https://doi.org/10.3390/biomedinformatics4020075
Pedreschi, D., Giannotti, F., Guidotti, R., Monreale, A., Ruggieri, S., & Turini, F. (2019). Meaningful explanations of black box AI decision systems. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 9780–9784. https://doi.org/10.1609/aaai.v33i01.33019780
Pei, Z. (2024). Computer-aided drug discovery: From traditional simulation methods to language models and quantum computing. Cell Reports Physical Science, 102334. https://doi.org/10.1016/j.xcrp.2024.102334
Pereira, R., Oliveira, J., & Sousa, M. (2020). Bioinformatics and Computational Tools for Next-Generation Sequencing Analysis in Clinical Genetics. Journal of clinical medicine, 9(1), 132. https://doi.org/10.3390/jcm9010132
Ponnarengan, H., Rajendran, S., Khalkar, V., Devarajan, G., & Kamaraj, L. (2024). Data-Driven Healthcare: The role of computational methods in medical innovation. Computer Modeling in Engineering & Sciences, 0(0), 1–10. https://doi.org/10.32604/cmes.2024.056605
Probul, N., Huang, Z., Saak, C. C., Baumbach, J., & List, M. (2024). AI in microbiome-related healthcare. Microbial biotechnology, 17(11), e70027. https://doi.org/10.1111/1751-7915.70027
Qiu, X., Li, H., Ver Steeg, G., & Godzik, A. (2024). Advances in AI for Protein Structure Prediction: Implications for Cancer Drug Discovery and Development. Biomolecules, 14(3), 339. https://doi.org/10.3390/biom14030339
Quazi S. (2022). Artificial intelligence and machine learning in precision and genomic medicine. Medical oncology (Northwood, London, England), 39(8), 120. https://doi.org/10.1007/s12032-022-01711-1
Radanliev, P. (2025). AI Ethics: Integrating transparency, fairness, and privacy in AI development. Applied Artificial Intelligence, 39(1). https://doi.org/10.1080/08839514.2025.2463722
Rawat, R., & Yadav, R. (2021). Big data: big data analysis, issues and challenges and technologies. IOP Conference Series Materials Science and Engineering, 1022(1), 012014. https://doi.org/10.1088/1757-899x/1022/1/012014
Sadeghi, Z., Alizadehsani, R., Cifci, M. A., Kausar, S., Rehman, R., Mahanta, P., Bora, P. K., Almasri, A., Alkhawaldeh, R. S., Hussain, S., Alatas, B., Shoeibi, A., Moosaei, H., Hladík, M., Nahavandi, S., & Pardalos, P. M. (2024). A review of Explainable Artificial Intelligence in healthcare. Computers & Electrical Engineering, 118, 109370. https://doi.org/10.1016/j.compeleceng.2024.109370
Satam, H., Joshi, K., Mangrolia, U., Waghoo, S., Zaidi, G., Rawool, S., Thakare, R. P., Banday, S., Mishra, A. K., Das, G., & Malonia, S. K. (2023). Next-Generation Sequencing Technology: Current Trends and Advancements. Biology, 12(7), 997. https://doi.org/10.3390/biology12070997
Seth, A., Thillainadesan, G., Amemiya, Y., & Nam, R. (2024). 22. Advancing personalized prostate cancer care: Utilizing miRNA profiling and machine learning for metastasis prediction. Cancer Genetics, 286–287, S7–S8. https://doi.org/10.1016/j.cancergen.2024.08.024
Singh, S., Gupta, H., Sharma, P., & Sahi, S. (2023). Advances in Artificial Intelligence (AI)-assisted approaches in drug screening. Artificial Intelligence Chemistry, 2(1), 100039. https://doi.org/10.1016/j.aichem.2023.100039
Spurney, R., Schwartz, M., Gobble, M., Sozzani, R., & Van den Broeck, L. (2021). Spatiotemporal Gene Expression Profiling and Network Inference: A Roadmap for Analysis, Visualization, and Key Gene Identification. Methods in molecular biology (Clifton, N.J.), 2328, 47–65. https://doi.org/10.1007/978-1-0716-1534-8_4
Taddese, A. A., Addis, A. C., & Tam, B. T. (2025). Data stewardship and curation practices in AI-based genomics and automated microscopy image analysis for high-throughput screening studies: promoting robust and ethical AI applications. Human Genomics, 19(1). https://doi.org/10.1186/s40246-025-00716-x
Taherdoost, H., & Ghofrani, A. (2024). AI’s role in revolutionizing personalized medicine by reshaping pharmacogenomics and drug therapy. Intelligent Pharmacy, 2(5), 643–650. https://doi.org/10.1016/j.ipha.2024.08.005
Tanaka, M. (2025). From serendipity to precision: integrating AI, Multi-Omics, and Human-Specific models for personalized neuropsychiatric care. Biomedicines, 13(1), 167. https://doi.org/10.3390/biomedicines13010167
Tang, S., Yuan, K., & Chen, L. (2022). Molecular biomarkers, network biomarkers, and dynamic network biomarkers for diagnosis and prediction of rare diseases. Fundamental Research, 2(6), 894–902. https://doi.org/10.1016/j.fmre.2022.07.011
Tiller, J., Lacaze, P., & Otlowski, M. (2022). The Australian moratorium on genetics and life insurance: evaluating policy compared to Parliamentary recommendations regarding genetic discrimination. Public Health Research & Practice, 32(4). https://doi.org/10.17061/phrp3242235
Umapathy, V. R., Rajinikanth B, S., Samuel Raj, R. D., Yadav, S., Munavarah, S. A., Anandapandian, P. A., Mary, A. V., Padmavathy, K., & R, A. (2023). Perspective of Artificial Intelligence in Disease Diagnosis: A Review of Current and Future Endeavours in the Medical Field. Cureus, 15(9), e45684. https://doi.org/10.7759/cureus.45684
Uzoeto, H. O., Cosmas, S., Bakare, T. T., & Durojaye, O. A. (2024). AlphaFold-latest: revolutionizing protein structure prediction for comprehensive biomolecular insights and therapeutic advancements. Beni-Suef University Journal of Basic and Applied Sciences, 13(1). https://doi.org/10.1186/s43088-024-00503-y
Vakili, M. G., Gorgulla, C., Snider, J., Nigam, A., Bezrukov, D., Varoli, D., Aliper, A., Polykovsky, D., Das, K. M. P., Cox, H., III, Lyakisheva, A., Mansob, A. H., Yao, Z., Bitar, L., Tahoulas, D., Čerina, D., Radchenko, E., Ding, X., Liu, J., . . . Zhavoronkov, A. (2025). Quantum-computing-enhanced algorithm unveils potential KRAS inhibitors. Nature Biotechnology. https://doi.org/10.1038/s41587-024-02526-3
Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., Figurnov, M., … Velankar, S. (2022). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic acids research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061
Visan, A. I., & Negut, I. (2024). Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life (Basel, Switzerland), 14(2), 233. https://doi.org/10.3390/life14020233
Vitorino, R. (2024). Transforming Clinical Research: The Power of High-Throughput Omics Integration. Proteomes, 12(3), 25. https://doi.org/10.3390/proteomes12030025
Vora, L. K., Gholap, A. D., Jetha, K., Thakur, R. R. S., Solanki, H. K., & Chavda, V. P. (2023). Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics, 15(7), 1916. https://doi.org/10.3390/pharmaceutics15071916
Wang, J., Cheng, Z., Yao, Q., Liu, L., Xu, D., & Hu, G. (2024). Bioinformatics and biomedical informatics with ChatGPT: Year one review. Quantitative biology (Beijing, China), 12(4), 345–359. https://doi.org/10.1002/qub2.67
Wenger, D., Hossain, M. S., & Senseman, J. R. (2024). AI and the Impact on Journalism Education. Journalism & Mass Communication Educator. https://doi.org/10.1177/10776958241296497
Williamson, S. M., & Prybutok, V. (2024). Balancing Privacy and Progress: A Review of Privacy Challenges, Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Applied Sciences, 14(2), 675. https://doi.org/10.3390/app14020675
Yang, C. T., Kristiani, E., Leong, Y. K., & Chang, J. S. (2023). Big data and machine learning driven bioprocessing - Recent trends and critical analysis. Bioresource technology, 372, 128625. https://doi.org/10.1016/j.biortech.2023.128625
Yang, Z., Zeng, X., Zhao, Y., & Chen, R. (2023). AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduction and Targeted Therapy, 8(1). https://doi.org/10.1038/s41392-023-01381-z
Zhang, Y., Huang, G., Zhao, Y., Lu, X., Wang, Y., Wang, C., Guo, X., & Zhao, C. (2024). Revolutionizing crop breeding: Next-Generation Artificial intelligence and Big Data-Driven intelligent design. Engineering. https://doi.org/10.1016/j.eng.2024.11.034
Zhao, J., Feng, Q., & Wei, W. Q. (2022). Integration of Omics and Phenotypic Data for Precision Medicine. Methods in molecular biology (Clifton, N.J.), 2486, 19–35. https://doi.org/10.1007/978-1-0716-2265-0_2
Zhou, H., Zhao, C., Cain, M., Bluvstein, D., Duckering, C., Hu, H., Wang, S., Kubica, A., & Lukin, M. D. (2024). Algorithmic fault tolerance for fast quantum computing. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2406.17653
Zitnik, M., Li, M. M., Wells, A., Glass, K., Gysi, D. M., Krishnan, A., Murali, T. M., Radivojac, P., Roy, S., Baudot, A., Bozdag, S., Chen, D. Z., Cowen, L., Devkota, K., Gitter, A., Gosline, S. J. C., Gu, P., Guzzi, P. H., Huang, H., . . . Milenković, T. (2024). Current and future directions in network biology. Bioinformatics Advances, 4(1). https://doi.org/10.1093/bioadv/vbae099