Effect of Morus alba L. leaf extracts on seeds germination and the seedlings growth of Sinapis alba L. and Cucumis sativus L.

Authors

  • Joanna Biel-Parzymięso Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Kraków, Poland

DOI:

https://doi.org/10.24917/25438832.5.7

Keywords:

aqueous extract, Cucums sativus L., fresh and dry mass, plants length, Sinapis alba L.

Abstract

Plant growth and development can be modified, including modification by chemical processes that result from neighbouring plants. If interactions in the natural environment between one plant and another are of a chemical nature, then this phenomenon is called allelopathy. The aim of the study was to determine the effect of aqueous extracts of Morus alba L., at concentrations of 3%, 5% and 10%, on the germination and growth of Sinapis alba L. (mustard) and Cucumis sativus L. (cucumber). It was found that allelopathins contained in the extracts slowed the germination of both species. The highest, 10%, extracts significantly inhibited germination. It was found that with an increase in allelopathin concentration, there was a significant inhibition of the growth of underground and above-ground plant organs. A complete lack of growth was observed for mustard plants grown from seeds watered with extracts during germination for 48 hours. Compared to the control plants, a differences in the growth of fresh and dry mass in plants watered with extracts during the germination and growth phases were found. Depending on the timing of treatment and the type of organ tested, aqueous mulberry leaf extracts at lower concentrations had a positive effect on the growth and development of the analysed species. Extracts with a higher concentration of chemical compounds had a negative impact on both mustard and cucumber.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ahmed, M., Wardle, D.A. (1994). Allelopathic potential of vegetative and flowering ragwort (Senecio jacobaea L.) plants against associated pasture species. Plant Soil, 164, 61–68. https://doi.org/10.1007/BF00010111

Barazani, O., Fredman, J. (2001). Allelopathic bacteria and their impact on higher plants. Critical Reviews in Microbiology, 27(1), 41–55. https://doi.org/10.1080/20014091096693

Barkosky, R.R., Einhellig, F.A. (2003). Allelopathic interference of plant-water relationships by parahydroxybenzoic acid. Botanical Bulletin-Academia Sinica, 44, 5358.

Baziramakenga, R., Leroux, G.D., Simard, R.R. (1995). Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. Journal of Chemical Ecology, 21, 1271–1285. https://doi.org/10.1007/BF02027561

Cheng, F., Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Science, 6, 1020. https://doi.org/10.3389/fpls.2015.01020

Ding, H., Ali, A., Cheng, Z. (2020). An allelopathic role for garlic root exudates in the regulation of carbohydrate metabolism in cucumber in a hydroponic co-culture system. Plants, 9(45), 1–23. https://doi.org/10.3390/plants9010045

Duke, S.O., Romagni, J.G., Dayan, F.E. (2000). Natural products as sources for new mechanisms of herbicidal action. Crop Protection, 19, 8–10. https://doi.org/10.1016/S0261-2194(00)00076-4

Einhellig, F.A. (1994). Allelopathy – current status and future goals. In: Inderjit, K.M.M. Dakshini, F.A. Einhelling (eds.), Allelopathy Organisms, Processes, and Applications. Washington: American Chemical Society. https://doi.org/10.1021/bk-1995-0582

Gniazdowska, A., Bogatek, R. (2005). Allelopathic interactions between plants. Multisite action of allelochemicals. Acta Physiologiae Plantarum, 27, 395–407. https://doi.org/10.1007/s11738-005-0017-3

Grześkowiak, J., Łochyńska, M. (2017). Bioactive compounds in white mulberry (Morus alba L.) and their therapeutic activity. Postępy Fitoterapii, 1, 31–35.

Harborne, J.B. (1997). Ekologia biochemiczna (Biochemical ecology). Warszawa: PWN. [In Polish]

Hussain, M.J., Reigosa, M.J. (2011). Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. Journal of Experimental Botany, 62(13), 4533–4545. https://doi.org/10.1093/jxb/err161

Janicka-Russak, M., Kabała, K., Pacholicki, P., Kłobus, G. (2004). Wpływ wybranych kwasów fenolowych na wzrost i aktywność plazmolemowej H+-ATPazy w siewkach ogórków (Effect of selected phenolic acids on the growth and activity of plasmolemic H+-ATPase in cucumber seedlings). Zeszyty Problemowe Postępów Nauk Rolniczych, 496, 325–330. [In Polish]

King, J. (2003). Sekretne życie roślin (The secret life of plants). Warszawa: Prószyński i Spółka. [In Polish]

Klein, K., Blum, U. (1990). Effects of soil nitrogen level on ferulic acid inhibition of cucumber leaf expansion. Journal of Chemical Ecology, 16, 1371–1384. https://doi.org/10.1007/BF01021033

Kong, C.-H., Xuan, T.D., Khanh, T.D., Tran, H.-D., Trung, N.T. (2019). Allelochemicals and signalling chemicals in plants. Molecules, 24(15), 2737. https://dx.doi.org/10.3390%2Fmolecules24152737

Leather, G.R., Einhellig, F.A. (1988). Bioassay of naturally occurring allelochemicals for phytotoxicity. Journal of Chemical Ecology, 14, 1821–1828. https://doi.org/10.1007/BF01013479

Mazur, A. (2019). The role of seed coat in the germination and early stages of growth of bean (Phaseolus vulgaris L.) in the presence of chickweed (Stellaria media (L.) Vill.). Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 4, 103–118. https://doi.org/10.24917/25438832.4.6

Molisch, H. (1937). Der Einfluss einer Pflanze auf die andere. Allelopathie (The influence of one plant on the other. Allelopathy). Verlang von Gustav Tischer. [In German]

Możdżeń, K., Barabasz-Krasny, B., Puła, J., Lepiarczyk, A., Zandi P. (2018). Wpływ stresu zasolenia i suszy na wczesny rozwój wybranych gatunków pastewnych (The impact of salinity and drought stress on the early development of selected forage species). Fragmenta Agronomica, 35(3), 77–88. [In Polish] https://doi.org/10.26374/fa.2018.35.31

Możdżeń, K., Barabasz-Krasny, B., Sołtys-Lelek, A., Stachurska-Swakoń, A., Puła, J. (2016). Wpływ wodnych ekstraktów z tasznika pospolitego (Capsella bursa-pastoris (L.) Medik.) na kiełkowanie i rozwój sałaty siewnej odmiany ‘Maryna’ (Lactuca sativa L. cv ‘Maryna’) (The influence of aqueous extracts of the common grass beetle (Capsella bursa-pastoris (L.) Medik.) on the germination and development of lettuce of the cultivar ‘Maryna’ (Lactuca sativa L. cv ‘Maryna’)). Agronomy Science, 71(2), 1–10.

Możdżeń, K., Barabasz-Krasny, B., Stachurska-Swakoń, A., Zandi, P., Puła, J., Wang, Y., Turisova, I. (2020). Allelopathic interaction between two common meadow plants: Dactylis glomerata L. and Trifolium pratense L. Biologia. https://doi.org/10.2478/s11756-020-00438-6

Możdżeń, K., Barabasz-Krasny, B., Zandi, P., Turisova, I. (2018). Influence of allelopathic activity of Galinsoga parviflora Cav. and Oxalis fontana Bunge on the early growth stages of cultivars Raphanus sativus L. var. radicula Pers. Biologia, 73, 1187–1195. https://doi.org/10.2478/s11756-018-0144-0

Możdżeń, K., Repka, P. (2014). Allelopathic influence of aqueous extracts from the leaves of Morus alba L. on seed germination and seedling growth of Cucumis sativus L. and Sinapsis alba L. Modern Phytomorphology, 5, 93–99. https://doi.org/10.5281/zenodo.161010

Możdżeń, K., Rzepka, A. (2017). Rola łupiny nasiennej podczas kiełkowania i wzrostu nasion bobu (Vicia faba L.) w obecności siarczanu ołowiu (The role of seed coat during germination and growth of broad bean seeds (Vicia faba L.) in the presence of lead sulphate). Agronomy Science, 71(4), 55–65. [In Polish]

Muller, C.H., Chou, C. (1972). Phytotoxins: An ecological phase of phytochemistry. In: J.B. Harbone (ed.), Pchytochemicel Ecology. London: Academic Press. p201–216.

Oleszek, W. (1992). Techniki badań allelopatii (Allelopathy research techniques). Wiadomości Botaniczne, 36(3–4), 17–25. [In Polish]

Puła, J., Zandi, P., Stachurska-Swakoń, A., Barabasz-Krasny, B., Możdżeń, K., Wang, Y. (2020). Influence of alcoholic extracts from Helianthus annnus L. roots on the photosynthetic activity of Sinapis alba L. cv. Barka plants. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 70, 8–13. https://doi.org/10.1080/09064710.2019.1661509

Rice, E.L. (1984). Allelopathy. Florida: Academic Press INC.

Skrzypek, E., Repka, P., Stachurska-Swakoń, A., Barabasz-Krasny, B., Możdżeń, K. (2015). Allelopathic effect of aqueous extracts from the leaves of peppermint (Mentha piperita L.) on selected physiological processes of common sunflower (Helianthus annuus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(2), 335–342. https://doi.org/10.15835/nbha43210034

Steiner, A.A. (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil, 15(2), 134–154.

Sturz, A., Christie, B. (2003). Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil and Tillage Research, 72, 107–123. https://doi.org/10.1016/S0167-1987(03)00082-5

Szafraniec, R., Możdżeń, K., Barabasz-Krasny, B., Zandi, P., Wang, Y. (2019). Influence of volatile peppermint (Mentha ×piperita L.) compounds on germination and seedling of radish (Raphanus sativus L. var. radicula Pers.) growth. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1277–1284. https://doi.org/10.15835/nbha47411718

Vaughan, D., Ord, B.G. (1991). Influence of natural and synthetic humic substances on the activity of urease. European Journal of Soil Science, 42(1), 17–23. https://doi.org/10.1111/j.1365-2389.1991.tb00087.x

Vyvyan, J.R. (2002). Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron, 58, 1631–1646.

Wardle, D.A., Nicholson, K.S., Rahman, A. (1993). Influence of plant age on the allelopathic potential of nodding thistle (Carduus nutans L.) against pasture grasses and legumes. Weed Research, 33, 69–78. https://doi.org/10.1111/j.1365-3180.1993.tb01919.x

Weston, L.A. (2005). History and current trends in the use of allelopathy for weed management. HortTechnology, 15(3), 529–534. https://doi.org/10.21273/HORTTECH.15.3.0529

Whittaker, R.H. (1972). Evolution and measurement of species diversity. Taxon, 21, 2–3. https://doi.org/10.2307/1218190

Wójcik-Wojtkowiak, D. (1998). Fizjologiczno-biochemiczna reakcja roślin na inhibitory allelopatyczne występujące w glebach oraz podłożach (Physiological and biochemical reaction of plants to allelopathic inhibitors occurring in soils and substrates). Zeszyty Problemowe Postępów Nauk Rolniczych, 461, 89–100. [In Polish]

Wójcik-Wojtkowiak, D., Politycka, B., Weyman-Kaczmarkowa, W. (1998). Allelopatia (Allelopathy). Poznań: Wydawnictwo Akademii Rolniczej w Poznaniu. [In Polish]

Zandi, P., Barabasz-Krasny, B., Stachurska-Swakoń, A., Puła J., Możdżeń, K. (2018). Allelopathic effects of Stellaria media (L.) Vill. on germination and early stages of growth of Raphanus sativus var. radicula. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 3, 90–99. https://doi.org/10.24917/25438832.3.7

Downloads

Published

2020-11-12

How to Cite

Biel-Parzymięso, J. (2020). Effect of Morus alba L. leaf extracts on seeds germination and the seedlings growth of Sinapis alba L. and Cucumis sativus L. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 5, 96–109. https://doi.org/10.24917/25438832.5.7

Issue

Section

Experimental Biology