Selected physiological processes of Betula ×oycoviensis Besser in different habitat conditions of the Ojcowska Valley (Southern Poland)

Authors

  • Katarzyna Możdżeń
  • Anna Sołtys-Lelek Ojców National Park, 32-045 Sułoszowa, Ojców 9
  • Beata Barabasz-Krasny 2Department of Botany, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorążych 2 St., 30-084 Kraków, Poland

Keywords:

birch, chlorophyll, FluorCam, fluorescence, rare species

Abstract

For years, the Ojców birch Betula ×oycoviensis Besser. was considered an endemic species. However, it turned out that apart from southern Poland it also occurs in other European locations. Nevertheless, it is a rare taxon that is vulnerable to extinction. The experiment aimed to learn about the functioning of the photosynthetic apparatus of Ojców birch and the condition of individuals of this species occurring at two stands in the Ojców National Park with different levels of sunlight. These studies have shown that this birch is a heliophilous taxon and that not very large changes in light intensity do not cause significant environmental stress. However, they induce differences in the content of chlorophyll pigments.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Allahverdiyeva, Y., Suorsa, M., Tikkanen, M., Aro, E.-M. (2015). Photoprotection of photosystems in fluctuating light intensities. Journal of Experimental Botany, 66(9), 2427–2436. https://doi.org/10.1093/jxb/eru463

Baláš, M., Kuneš, I., Gallo, J., Rašáková, N. (2016). Review on Betula oycoviensis and foliar morphometry of the species in Volyne, Czech Republic. Dendrobiology, 76, 117–125.

Barnes, J.D., Balaguer, L., Manrique, E., Elvira, S., Davison, A.E. (1992). A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany, 32(2), 85–100. https://doi.org/10.1016/0098-8472(92)90034-Y

Bercea, V., Hegedus, A., Sicora, C. (2012). Study on the effect of different light intensities on the structure and function of PSII in Cyanothece sp. ATCC 51142. Annals of the Romanian Society for Cell Biology, 17, 373–378.

Besser, W. (1809). Primitiae florae Galiciae austiacae utriusque. 2, p. 423. Sumpt. Ant. Doll. Viennae.

Buriánek, V., Novotny, P., Frydl, J (2014). Metodická príručka k určování domácích druhu bríz. Certifikovaná metodika [Methodological manual for native birch species determination]. Lesnický pruvodce 3/2014. Výzkumný ústav lesního hospodárství a myslivosti, v. v. i., pp. 40. [in Czech]

Davies, E.C., Chow, W.S., Le Fay, J.M., Jordan, B.R. (1986). Acclimation of tomato leaves to changes in light intensity; effects on the function of the thylakoid membrane. Journal of Experimental Botany, 37(2), 211–220. https://doi.org/10.1093/jxb/37.2.211

Frankowski, K., Kęsy, J., Kopcewicz, J. (2001). Phytochrome mediated light signal transduction. Postępy Biochemii, 47(2), 184–191.

Gajc-Wolska, J., Kowalczyk, K. Metera, A., Mazur, K. Bujalski, D., Hemka, L. (2013). Effect of supplementary lighting on selected physiological parameters and yielding of tomato plants. Folia Horticulturae, 25/2, 153–159. https://doi.org/10.2478/fhort-2013-0017

Kalaji, H.M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I.A., Cetner, M.D., Łukasik, I., Goltsev, V., Ladle, R.J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(102), 2016. https://doi.org/10.1007/s11738-016-2113-y

Kalaji, M.H., Łoboda, T. (2010). Fluorescencja chlorofilu w badaniach stanu fizjologicznego roślin. Wyd. SGGW. Warszawa, p. 73–77. [In Polish]

Karpinski, S., Reynolds, H., Karpinska, B., Wingsle, G., Creissen, G., Mullineaux, P.M. (1999). Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science, 284(5414), 654–657. https://doi.org/10.1126/science.284.5414.654

Kovar, M., Brestic, M., Olsovska, K. (2001). Chlorophyll a fluorescence as a bioindicator of the plant environmental stress. Acta Fytotechnica et Zootechnica, 4(Special number), 126–127.

Kraepiel, Y., Agnès, C., Thiery, L., Maldiney, R., Miginiac, E., Delaure, M. (2001). The growth of tomato (Lycopersicon esculentum Mill.) hypocotyls in the light and in darkness differentially involves auxin. Plant Science, 161(6), 1067–1074. https://doi.org/10.1016/S0168-9452(01)00495-2

Kříž, Z. (2003). Betula L. – bříza [Betula L. – birch]. In: Hejný, S., Slavík, B. (eds.), Květena České republiky, část II [Flora of the Czech Republic, Part II]. Academia, Prague, Czech Republic, pp. 35–46. [in Czech]

Lichtenthaler, H.K., Buschmann, C. Döll, M., Fietz, H.J., Bach, T., Kozel, U., Meier, D., Rahmsdorf, U. (1981). Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Research, 2(2), 115-141. https://doi.org/10.1007/BF00028752

Lichtenthaler, H.K., Buschmann, C., Knapp, M. (2004). Measurement of chlorophyll fluorescence kinetics (Kautsky effect) and the chlorophyll fluorescence decrease ratio (RFd-values) with the PAM-Fluorometer. In: Filek, N., Biesaga-Kościelniak, J., Marcińska, I. (eds.), Analytical methods in Plant Stress Biology. The Franciszek Gorski Institute of Plant Physiology of the Polish Academy of Sciences, p. 93–111.

Liu, H., Liu, B.H., Liu, B., Zhao, C., Pepper, M. (2011). The action mechanisms of plant cryptochromes. Trends in Plant Science, 16(12), 684–691. https://doi.org/10.1016/j.tplants.2011.09.002

Mänd P., Hallik, L., Peñuelas, J., Kull, O. (2012). Electron transport efficiency at opposite leaf sides: effect of vertical distribution of leaf angle, structure, chlorophyll content and species in a forest canopy. Tree Physiology, 33, 202–210. https://doi.org/10.1093/treephys/tps112

Maxwell, K., Johnson, N.G. (2000). Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany, 51(345), 659–668. https://doi.org/10.1093/jexbot/51.345.659

Michalik, S. (1983). Rozmieszczenie roślin kserotermicznych i górskich w Ojcowskim Parku Narodowym w zależności od warunków mikroklimatu. Studia Naturae Ser. A, 24, 75 pp. [In Polish]

Mittal, S., Kumari, N., Sharma, V. (2011). Differential responses of seven contrasting species to high light using pigment and chlorophyll a fluorescence. Journal of Stress Physiology and Biochemistry, 7(2), 21–33.

Możdżeń, K., Saja, D., Ryś, M., Skoczowski, A. (2014). Impact of light spectral composition on the length and weight of the gametophyte Polytrichiastrum formosum (Hedw.) G.L. Sm., Plagiomnium cuspidatum (Hedw.) T.J. Kop. and Pleurozium schreberi (Brid.) Mitt. Modern Phytomorphology, 5, 73–78.

Mullineaux, P., Karpinski, S. (2002). Signal transduction in response to excess light getting out of the chloroplast. Current Opinion in Plant Biology, 5(1), 43–48. https://doi.org/10.1016/s1369-5266(01)00226-6

Muneer, S., Kim, E.J., Park, J.S., Lee, J.H. (2014). Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). International Journal of Molecular Sciences, 15, 4657–4670. https://doi.org/10.3390/ijms15034657

Murkowski, A. (2003). Effect of chill and intensity of light on the activity photosystem II in spring oilseed rape. Rośliny Oleiste, 24, 77-83.

O’Carrigana A., Hinde, E., Lua, N., Xua, X-O., Duanc, H., Huang, G., Maka, M., Bellott,i B., Chena, Z-H. (2014). Effects of light irradiance on stomatal regulation and growth of tomato. Environmental and Experimental Botany, 98, 65–73. http://dx.doi.org/10.1016/j.envexpbot.2013.10.007

Pettersen, R.I., Torre, S., Gislerød, H.R. (2010). Effect of intracanopy lighting on photosynthetic characteristic in cucumber. Scientia Horticulturae, 125(2), 77–81. https://doi.org/10.1016/j.scienta.2010.02.006

Pilarski, J. (2005). Na świetle i w mroku. Academia, 4(4), 33–35. [In Polish]

Pilarski, J., Tokarz, K., Kocurek, M. (2012). Adaptacja roślin do składu spektralnego i intensywności promieniowania. Prace Instytutu Elektrotechniki, 256, 223–236.

Saldaña, A.O., Hernández, C., Coopman, R.E., Bravo, L.A., Corcuera, L.J. (2010). Differences in light usage among three fern species of genus Blechnum of contrasting ecological breadth in a forest light gradient. Ecological Research, 25, 273–281. https://doi.org/10.1007/s11284-009-0656-8.

Seki, M., Kamei, A., Yamaguchi-Shinozaki, K., Shinozaki, K. (2003). Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology, 14(2), 194–199. https://doi.org/10.1016/s0958-1669(03)00030-2

Seki, M., Narusaka, I., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Amaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., Shinozaki, K. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal, 31(3), 279–292. https://doi.org/10.1046/j.1365-313x.2002.01359.x

Starck, Z. (2005). Plant responses to the abiotic environmental stresses – acclimatization and adaptation. In: Benedycki, S., Czyż, H., Frame, J., Kasperczyk, M., Goliński, P., Kozłowski, S., Opitz von Boberfeld, W., Mikołajczak, Z., Rutkowska, B., Warda, M. (eds.), Grassland Science in Poland. Polish Grassland Society, Poznań 8, 173–184. [In Polish]

Staszkiewicz, J. (2001). Betula ×oycoviensis Besser. W: Kaźmierczakowa R. Zarzycki K. (red.), Polska Czerwona Księga Roślin. p. 76–77. Instytut Ochrony Przyrody PAN, Instytut Botaniki im. W. Szafera PAN, Kraków. [In Polish]

Szaferowa, J. (1933). Brzoza. Biblioteka przyrodnicza. Nakładem Księgarni Św. Wojciecha. Poznań-Warszawa-Wilno-Lublin. [In Polish]

Thery, M. (2001). Forest light and its influence on habitat selection. Plant Ecology, 153, 251–261. https://doi.org/10.1023/A:1017592631542

Valladares, F., Niinemets, U. (2008). Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 39, 237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506

Vítámvás, J., Kuneš, I., Viehmannová, I., Linda, R., Baláš, M. (2020). Conservation of Betula oycoviensis, an endangered rare taxon, using vegetative propagation methods. iForest – Biogeosciences and Forestry, 13(2), 107–113. https://doi.org/10.3832/ifor3243-013

Woźny, A., Jerzy, M. (2004). Wpływ barwy światła na jakość tulipanów pędzonych metodą +5°C. Acta Scientiarum Polonorum Hortorum Cultus, 3(2), 3–11. [In Polish]

Zarzycki, K., Kaźmierczakowa, R., Mirek, Z. (2014). Polska Czerwona Księga Roślin. Paprotniki i rośliny kwiatowe. Wyd. III. uaktualnione i rozszerzone. Kraków: Instytut Ochrony Przyrody PAN. [In Polish]

Zhang, M., Zhu, J., Li, M., Zhang, G., Yan, O. (2013). Different light acclimation strategies of two coexisting tree species seedlings in a temperate secondary forest along five natural light levels. Forest Ecology and Management, 306, 234–242. https://doi.org/10.1016/j.foreco.2013.06.031

Downloads

Published

2024-10-21

How to Cite

Możdżeń, K., Sołtys-Lelek, A., & Barabasz-Krasny, B. (2024). Selected physiological processes of Betula ×oycoviensis Besser in different habitat conditions of the Ojcowska Valley (Southern Poland). Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 9(1). Retrieved from https://aupcstudianaturae.uken.krakow.pl/article/view/11404

Issue

Section

Experimental Biology

Most read articles by the same author(s)

1 2 > >>