The effect of rose bengal activated with green diode laser light on selected Gram-positive and Gram-negative bacterial strains

Authors

  • Magdalena Greczek-Stachura Department of Plant Physiology, Institute of Biology and Earth Science, University of the National Education Commission, Podchorążych 2 St., 30-084 Kraków, Poland
  • Bartosz Różanowski Department of Plant Physiology, Institute of Biology and Earth Science, University of the National Education Commission, Podchorążych 2 St., 30-084 Kraków, Poland
  • Agnieszka Kania University of the National Education Commission, Krakow

DOI:

https://doi.org/10.24917/25438832.8.3

Keywords:

antimicrobial, diode laser light irradiation, photodynamic effect, rose bengal

Abstract

In recent years the photodynamic activity of rose bengal activated with green light against selected bacterial strains has been reported. However, according to our knowledge, the differences between the sensitivity of Gram-positive and Gram-negative bacterial strains in the presence of this photosensitizer have not been described. The aim of the conducted research was to examine the antibacterial effect of 535 nm wavelength diode laser light in the presence of rose bengal as photosensitizer on selected reference bacterial strains: Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. Sterile 96-well microtiter plates were used to determine the antibacterial activity of the green light and rose bengal solutions at various concentrations. The labelled bacterial suspensions were placed to each well of the 96-well microtiter plate filled with liquid medium LB and solution of rose bengal. The plates were exposed to green diode laser light. After 24 hours of incubation at 37oC, the turbidance was read in a spectrophotometer. The irradiation in the presence of photosensitizer can act in an antibacterial manner, either bacteriostatically or bactericidally. The tested strains exhibit different sensitivity to irradiation because of the structure of the cell wall, the presence of different bacterial pigments and photoreceptor proteins in some species of bacteria. Gram-positive bacteria, Staphylococcus aureus and Enterococcus faecalis were the most photosensitive strains due to the higher possibility of rose bengal penetration into the bacterial cell, leading to the bacteriostatic effect. Our results show that rose bengal may be applied in the treatment of Gram-positive infections.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Alexander W. (2010). American society of clinical oncology, 2010 annual meeting and rose bengal: from a wool dye to a cancer therapy. Pharmacy and Therapeutics, 35(8), 469–478.

Amodeo, D., Lucarelli, V., De Palma, I., Puccio, A., Nante, N., Cevenini, G., Messina, G. (2022). Efficacy of violet–blue light to inactive microbial growth. Scientific Reports, 12, 20179. https://doi.org/10.1038/s41598-022-24563-1

Baroyan, N.V. (1985). Method for evaluating the total absorption-excretion function of the liver clearance curves for the indicators indocyanine green and 131I-rose bengal in blood. Experimental Medicine, 20, 74–78.

Bonnett, R. (2002). Progress with heterocyclic photosensitizers for the photodynamic therapy (PDT) of tumours, Journal of Heterocyclic Chemistry, 39, 455. https://doi.org/10.1002/jhet.5570390303

Boucher, H.W., Corey, G.R. (2008). Epidemiology of methicillin-resistant Staphylococcus aureus. Clinical Infectious Diseases, Suppl 5, 1(46), 344–349. https://doi.org/10.1086/533590. PMID: 18462089.

Briggs, T., Blunn, G., Hislop, S., Ramalhete, R., Bagley, C., McKenna, D., Coathup, M. (2018). Antimicrobial photodynamic therapy - a promising treatment for prosthetic joint infections. Lasers in Medical Science, 33(3), 523–532. https://doi.org/ 10.1007/s10103-017-2394-4

Centres for Disease Control and Prevention (CDC) (2003). Outbreaks of community-associated methicillin-resistant Staphylococcus aureus skin infections--Los Angeles County, California, 2002-2003. Morbidity and Mortality Weekly Report, 52(5), 88. PMID: 12588006.

Cieplik, F., Deng, D., Crielaard, W., Buchalla, W., Hellwig, E., Al-Ahmad, A., Maisch, T. (2018). Antimicrobial photodynamic therapy - what we know and what we don’t. Critical Reviews in Microbiology, 44(5), 571–589. https://doi.org/ 10.1080/1040841X.2018.1467876.

Dadras, S., Mohajerani, E., Eftekhar, F., Hosseini, M. (2006). Different photoresponses of Staphylococcus aureus and Pseudomonas aeruginosa to 514, 532, and 633 nm low level lasers in vitro. Current Microbiology, 53, 282–286. https://doi.org/10.1007/s00284-005-0490-3

Dahl, T.A., Midden, W.R., Neckers, D.C. (1988). Comparison of photodynamic action by Rose Bengal in gram-positive and gram-negative bacteria. Photochemistry and Photobiology, 48(5), 607–612. https://doi.org/10.1111/j.1751-1097.1988.tb02870

de Oliveira Silva, J.V., Meneguello, J.E., Formagio, M.D., Freitas, C.F., Hioka, N., Pilau, E.J., Marchiosi, R., Machinski, M. Junior, de Abreu Filho, B.A, Zanetti Campanerut-Sá, P.A., Graton Mikcha, J.M. (1923). Proteomic Investigation over the Antimicrobial Photodynamic Therapy Mediated by Rose Bengal Against Staphylococcus aureus. Photochemistry and Photobiology, 99(3), 957–966. https://doi.org/10.1111/php.13707

Dhaini, B., Daouk, J., Schohn, H., Jouan-Hureaux, V., Acherar, S., Arnoux, P., Rocchi, P., Lux, F., Tillement, O., Hamieh, T., Frochot, C. (2023). Rose Bengal coupled to AGuIX NPs for anti-cancer photodynamic therapy, Photodiagnosis and Photodynamic Therapy, 41, 103424. https://doi.org/10.1016/j.pdpdt.2023.103424.

Diggle, S., Whiteley, M. (2020). Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology, 166 (1), 30–33. https://doi.org/10.1099/mic.0.000860

Dolmans, D., Fukumura, D., Jain, R. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3, 380–387. https://doi.org/10.1038/nrc1071

Donnelly, R.F., McCarron, P.A., Cassidy, C.M., Elborn, J.S., Tunney, M.M. (2007). Delivery of photosensitizers and light through mucus: Investigations into the potential use of photodynamic therapy for treatment of Pseudomonas aeruginosa cystic fibrosis pulmonary infection. Journal of Controlled Release, 117(2), 217–226. https://doi.org/10.1016/j.jconrel.2006.11.010

Driscoll, J.A., Brody, S.L., Kollef, M.H. (2007). The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections, Drugs, 67, 351–368.

Fonseca, T.H.S., Gomes, J.M.S., Alacoque, M., Vannier-Santos, M.A., Gomes, M.A., Busatti, H.G.N.O. (2018). Photodynamic therapy effect on the ultrastructure of Trichomonas vaginalis trophozoites and their effectiveness in experimentally infected animals. bioRxiv 327189. https://doi.org/10.1101/327189

Garcez, A.S., Kaplan, M., Jensen, G.J., Scheidt, F.R., Oliveira, E.M., Suzuki, S.S. (2020). Effects of antimicrobial photodynamic therapy on antibiotic-resistant Escherichia coli. Photodiagnosis and Photodynamic Therapy, 32, 102029. https://doi.org/10.1016/j.pdpdt.2020.102029

Ghorbani, J., Rahban, D., Aghamiri, S., Teymouri, A., Bahador, A. (2018). Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Therapy, 31, 27(4), 293–302. https://doi.org/10.5978/islsm.27_18-RA-01

Gilger, B.C.; Wilkie, D.A. (2013). A topical aqueous calcineurin inhibitor for the treatment of naturally occurring keratoconjunctivitis sicca in dogs. Veterinary Ophthalmology, 16, 192–197. https://doi.org/10.1111/j.1463-5224.2012.01056.x

Guffey, J.S., Wilborn, J. (2006). In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomedicine and Laser Surgery, 24(6), 684–688. https://doi.org/10.1089/pho.2006.24.684

Gunaydin, G., Gedik, M.E., Ayan, S. (2021). Photodynamic Therapy for the Treatment and Diagnosis of Cancer–A Review of the Current Clinical Status. Frontiers in Chemistry, 9, 686303. https://doi.org/10.3389/fchem.2021.686303

Hamblin, M.R., Hasan, T. (2004). Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochemical and Photobiological Sciences, 3(5), 436–450. https://doi.org/10.1039/b311900a

Hashimoto, M.C., Prates, R.A., Kato, I.T., Núñez, S.C., Courrol, L.C., Ribeiro, M.S. (2012). Antimicrobial photodynamic therapy on drug-resistant Pseudomonas aeruginosa-induced infection. An in vivo study. Photochemistry and Photobiology, 88(3), 590–595. https://doi.org/10.1111/j.1751-1097.2012.01137.x

Hung, J.H., Wang, Z.X., Lo, Y.H., Lee, C.N., Chang, Y., Chang, R.Y., Huang, C.C., Wong, T.W. (2022). Rose Bengal-Mediated Photodynamic Therapy to Inhibit Candida albicans. Journal of Visualized Experiments, 24(181), e63558. https://doi.org/10.3791/63558

Ito, T. (2008). The dependence of photosensitizing efficacy of acridine orange and toluidine blue on the degree of sensitizer-cell interaction. Photochemistry and Photobiology, 31, 565–570. http://dx.doi.org/10.1111/j.1751-1097.1980.tb03747.x

Kim, S., Kim, J., Lim, W., Jeon, S., Kim, O., Koh, J.T., Kim, C.S., Choi, H., Kim, O. (2013). In vitro bactericidal effects of 625, 525, and 425 nm wavelength (red, green, and blue) light-emitting diode irradiation. Photomedicine and Laser Surgery, 31(11), 554–562. https://doi.org/10.1089/pho.2012.3343

Kim, Y.S.; Rubio, V. (2011). Cancer treatment using an optically inert rose bengal derivative combined with pulsed focused ultrasound. Journal of Controlled Release, 156, 315–322. https://doi.org/10.1016/j.jconrel.2011.08.016

Kitanaka, Y., Takeuchi, Y., Hiratsuka, K., Aung, N., Sakamaki, Y., Nemoto, T., Meinzer, W., Izumi, Y., Iwata, T., Aoki, A. (2020). The effect of antimicrobial photodynamic therapy using yellow-green LED and rose bengal on Porphyromonas gingivalis, Photodiagnosis and Photodynamic Therapy, 32, 102033, https://doi.org/10.1016/j.pdpdt.2020.102033

Kraiselburd, I., Moyano, L., Carrau, A., Tano, J., Orellano, E.G. (2017). Bacterial Photosensory Proteins and Their Role in Plant-pathogen Interactions. Photochemistry and Photobiology, 93, 666–674. https://doi.org/10.1111/php.12754

Kurosu, M., Mitachi, K., Yang, J., Pershing, E.V., Horowitz, B.D., Wachter, E.A., Lacey, J.W. 3rd, Ji, Y., Rodrigues, D.J. (2022). Antibacterial Activity of Pharmaceutical-Grade Rose Bengal: An Application of a Synthetic Dye in Antibacterial Therapies. Molecules, 5, 27(1), 322. https://doi.org/10.3390/molecules27010322

Liu, H.; Innamarato, P.P. (2016). Intralesional rose bengal in melanoma elicits tumor immunity via activation of dendritic cells by the release of high mobility group box 1. Oncotarget, 7, 37893–37905. https://doi.org/10.18632/oncotarget.9247

Liu, Y., Qin, R., Zaat, S.A.J., Breukink, E., Heger, M. (2015). Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. Journal of Clinical and Translational Research, 1, 1(3), 140–167.

López-Jiménez, L., Fusté, E., Martínez-Garriga, B., Arnabat-Domínguez, J., Vinuesa, T., Viñas, M. (2015). Effects of photodynamic therapy on Enterococcus faecalis biofilms. Lasers in Medical Science, 30(5), 1519–1526. https://doi.org/10.1007/s10103-015-1749-y

Lowy, F.D. (1998). Staphylococcus aureus infections. New England Journal of Medicine, 20, 339(8), 520–532. https://doi.org/10.1056/NEJM199808203390806

Maker, A.V.; Prabhakar, B. (2015). The potential of intralesional rose bengal to stimulate T-cell mediated anti-tumor responses. Journal of Cellular Immunology, 6, 343–349. https://doi.org/10.4172/2155-9899.1000343

Malik, Z., Ladan, H., Nitzan, Y. (1992). Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. Journal of Photochemistry and Photobiology B: Biology, 14(3), 262–266.

Martins Antunes de Melo, W.C., Celiešiūtė-Germanienė, R., Šimonis, P., Stirkė, A. (2021). Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence, 12(1), 2247–2272. https://doi.org/10.1080/21505594.2021.1960105

Merchat, M., Bertolini, G., Giacomini, P., Villaneuva, A., Jori, G. (1996). Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. Journal of Photochemistry and Photobiology B: Biology, 32(3), 153–157.

Mincev, M.; Zaharieva, Z. (1974). Comparison between the iodine-131-labeled rose bengal radioisotopic hepatogram indexes and those of other laboratory examinations in patients with hepatic cirrhosis. Folia Medica, 16, 35–41.

Minnock, A., Vernon, D.I., Schofield, J., Griffiths, J., Parish, J.H., Brown, S.T. (1996). Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. Journal of Photochemistry and Photobiology B, 32(3), 159–64. https://doi.org/10.1016/1011-1344(95)07148-2

Nakonechny, F., Barel, M., David, A., Koretz, S., Litvak, B., Ragozin, E., Etinger, A., Livne, O., Pinhasi, Y., Gellerman, G., Nisnevitch, M. (2019). Dark Antibacterial Activity of Rose Bengal. International Journal of Molecular Sciences, 29, 20(13), 3196. https://doi.org/10.3390/ijms20133196

Nitzan, Y., Gutterman, M., Malik, Z., Ehrenberg, B. (1992). Inactivation of gram-negative bacteria by photosensitized porphyrins. Photochemistry and Photobiology, 55(1), 89–96. https://doi.org/10.1111/j.1751-1097.1992.tb04213.x

Patel, S.P., Carter, B.W., Murthy, R., Sheth, R., Agarwala, S.S., Lu, G., Redstone, E., Balmes, G.C., Rider, H., Rodrigues, D., Wachter, E.A. (2020). Percutaneous hepatic injection of rose bengal disodium (PV-10) in metastatic uveal melanoma. Journal of Clinical Oncology, 38, 3143. https://doi.org/10.1200/JCO.2020.38.15_suppl.3143

Paulino, T.P., Magalhães, P.P., Thedei Júnior, G., Tedesco, A.C., Ciancaglini, P. (2005). Use of visible light-based photodynamic therapy to bacterial photoinactivation. Bambed – Biochemistry and Molecular Biology Education, 33(1), 46–49. https://doi.org/10.1002/bmb.2005.494033010424

Pérez, C., Zúñiga, T., Palavecino, C.E. (2021). Photodynamic therapy for treatment of Staphylococcus aureus infections, Photodiagnosis and Photodynamic Therapy, 34, 102285, https://doi.org/10.1016/j.pdpdt.2021.102285.

Qin, J.; Kunda, N. (2017). Colon cancer cell treatment with rose bengal generates a protective immune response via immunogenic cell death. Cell Death and Disease, 8, e2584. https://doi.org/10.1038/cddis.2016.473

Sarowska, J., Choroszy-Krol, I., Jama-Kmiecik, A., Mączynska, B., Cholewa, S., Frej-Madrzak, M. (2022). Occurrence and characteristics of carbapenem-resistant Klebsiella pneumoniae strains isolated from hospitalized patients in Poland-A single centre study. Pathogens, 11, 859. https://doi.org/10.3390/pathogens11080859

Taylor, T.A., Unakal, C.G. (2023). Staphylococcus aureus infection. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 January.

Tennert, C., Feldmann, K., Haamann, E., Al-Ahmad, A., Follo, M., Wrbas, K.T., Hellwig, E., Altenburger, M.J. (2014). Effect of photodynamic therapy (PDT) on Enterococcus faecalis biofilm in experimental primary and secondary endodontic infections. BMC Oral Health, 4(14), 132. https://doi.org/10.1186/1472-6831-14-132

Vital-Fujii, D.G., Baptista, M.S. (2021). Progress in the photodynamic therapy treatment of Leishmaniasis. Brazilian Journal of Medical and Biological Research, 29, 54(12), e11570. https://doi.org/10.1590/1414-431X2021e11570

Varzandeh, M., Mohammadinejad, R., Esmaeilzadeh-Salestani, K., Dehshahri, A., Zarrabi, A., Aghaei-Afshar, A. (2021). Photodynamic therapy for leishmaniasis: Recent advances and future trends, Photodiagnosis and Photodynamic Therapy, 36, 102609. https://doi.org/10.1016/j.pdpdt.2021.102609

Wang, D., Pan, H., Yan, Y., Zhang, F. (2021). Rose bengal-mediated photodynamic inactivation against periodontopathogens in vitro, Photodiagnosis and Photodynamic Therapy, 34, 102250. https://doi.org/10.1016/j.pdpdt.2021.102250

Downloads

Published

2023-12-21

How to Cite

Greczek-Stachura, M., Różanowski, B., & Kania, A. (2023). The effect of rose bengal activated with green diode laser light on selected Gram-positive and Gram-negative bacterial strains. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 8(1). https://doi.org/10.24917/25438832.8.3

Issue

Section

Experimental Biology