The effect of rose bengal activated with green diode laser light on selected Gram-positive and Gram-negative bacterial strains


  • Magdalena Greczek-Stachura Department of Plant Physiology, Institute of Biology and Earth Science, University of the National Education Commission, Podchorążych 2 St., 30-084 Kraków, Poland
  • Bartosz Różanowski Department of Plant Physiology, Institute of Biology and Earth Science, University of the National Education Commission, Podchorążych 2 St., 30-084 Kraków, Poland
  • Agnieszka Kania University of the National Education Commission, Krakow



antimicrobial, diode laser light irradiation, photodynamic effect, rose bengal


In recent years the photodynamic activity of rose bengal activated with green light against selected bacterial strains has been reported. However, according to our knowledge, the differences between the sensitivity of Gram-positive and Gram-negative bacterial strains in the presence of this photosensitizer have not been described. The aim of the conducted research was to examine the antibacterial effect of 535 nm wavelength diode laser light in the presence of rose bengal as photosensitizer on selected reference bacterial strains: Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. Sterile 96-well microtiter plates were used to determine the antibacterial activity of the green light and rose bengal solutions at various concentrations. The labelled bacterial suspensions were placed to each well of the 96-well microtiter plate filled with liquid medium LB and solution of rose bengal. The plates were exposed to green diode laser light. After 24 hours of incubation at 37oC, the turbidance was read in a spectrophotometer. The irradiation in the presence of photosensitizer can act in an antibacterial manner, either bacteriostatically or bactericidally. The tested strains exhibit different sensitivity to irradiation because of the structure of the cell wall, the presence of different bacterial pigments and photoreceptor proteins in some species of bacteria. Gram-positive bacteria, Staphylococcus aureus and Enterococcus faecalis were the most photosensitive strains due to the higher possibility of rose bengal penetration into the bacterial cell, leading to the bacteriostatic effect. Our results show that rose bengal may be applied in the treatment of Gram-positive infections.


Download data is not yet available.


Metrics Loading ...


Alexander W. (2010). American society of clinical oncology, 2010 annual meeting and rose bengal: from a wool dye to a cancer therapy. Pharmacy and Therapeutics, 35(8), 469–478.

Amodeo, D., Lucarelli, V., De Palma, I., Puccio, A., Nante, N., Cevenini, G., Messina, G. (2022). Efficacy of violet–blue light to inactive microbial growth. Scientific Reports, 12, 20179.

Baroyan, N.V. (1985). Method for evaluating the total absorption-excretion function of the liver clearance curves for the indicators indocyanine green and 131I-rose bengal in blood. Experimental Medicine, 20, 74–78.

Bonnett, R. (2002). Progress with heterocyclic photosensitizers for the photodynamic therapy (PDT) of tumours, Journal of Heterocyclic Chemistry, 39, 455.

Boucher, H.W., Corey, G.R. (2008). Epidemiology of methicillin-resistant Staphylococcus aureus. Clinical Infectious Diseases, Suppl 5, 1(46), 344–349. PMID: 18462089.

Briggs, T., Blunn, G., Hislop, S., Ramalhete, R., Bagley, C., McKenna, D., Coathup, M. (2018). Antimicrobial photodynamic therapy - a promising treatment for prosthetic joint infections. Lasers in Medical Science, 33(3), 523–532. 10.1007/s10103-017-2394-4

Centres for Disease Control and Prevention (CDC) (2003). Outbreaks of community-associated methicillin-resistant Staphylococcus aureus skin infections--Los Angeles County, California, 2002-2003. Morbidity and Mortality Weekly Report, 52(5), 88. PMID: 12588006.

Cieplik, F., Deng, D., Crielaard, W., Buchalla, W., Hellwig, E., Al-Ahmad, A., Maisch, T. (2018). Antimicrobial photodynamic therapy - what we know and what we don’t. Critical Reviews in Microbiology, 44(5), 571–589. 10.1080/1040841X.2018.1467876.

Dadras, S., Mohajerani, E., Eftekhar, F., Hosseini, M. (2006). Different photoresponses of Staphylococcus aureus and Pseudomonas aeruginosa to 514, 532, and 633 nm low level lasers in vitro. Current Microbiology, 53, 282–286.

Dahl, T.A., Midden, W.R., Neckers, D.C. (1988). Comparison of photodynamic action by Rose Bengal in gram-positive and gram-negative bacteria. Photochemistry and Photobiology, 48(5), 607–612.

de Oliveira Silva, J.V., Meneguello, J.E., Formagio, M.D., Freitas, C.F., Hioka, N., Pilau, E.J., Marchiosi, R., Machinski, M. Junior, de Abreu Filho, B.A, Zanetti Campanerut-Sá, P.A., Graton Mikcha, J.M. (1923). Proteomic Investigation over the Antimicrobial Photodynamic Therapy Mediated by Rose Bengal Against Staphylococcus aureus. Photochemistry and Photobiology, 99(3), 957–966.

Dhaini, B., Daouk, J., Schohn, H., Jouan-Hureaux, V., Acherar, S., Arnoux, P., Rocchi, P., Lux, F., Tillement, O., Hamieh, T., Frochot, C. (2023). Rose Bengal coupled to AGuIX NPs for anti-cancer photodynamic therapy, Photodiagnosis and Photodynamic Therapy, 41, 103424.

Diggle, S., Whiteley, M. (2020). Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology, 166 (1), 30–33.

Dolmans, D., Fukumura, D., Jain, R. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3, 380–387.

Donnelly, R.F., McCarron, P.A., Cassidy, C.M., Elborn, J.S., Tunney, M.M. (2007). Delivery of photosensitizers and light through mucus: Investigations into the potential use of photodynamic therapy for treatment of Pseudomonas aeruginosa cystic fibrosis pulmonary infection. Journal of Controlled Release, 117(2), 217–226.

Driscoll, J.A., Brody, S.L., Kollef, M.H. (2007). The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections, Drugs, 67, 351–368.

Fonseca, T.H.S., Gomes, J.M.S., Alacoque, M., Vannier-Santos, M.A., Gomes, M.A., Busatti, H.G.N.O. (2018). Photodynamic therapy effect on the ultrastructure of Trichomonas vaginalis trophozoites and their effectiveness in experimentally infected animals. bioRxiv 327189.

Garcez, A.S., Kaplan, M., Jensen, G.J., Scheidt, F.R., Oliveira, E.M., Suzuki, S.S. (2020). Effects of antimicrobial photodynamic therapy on antibiotic-resistant Escherichia coli. Photodiagnosis and Photodynamic Therapy, 32, 102029.

Ghorbani, J., Rahban, D., Aghamiri, S., Teymouri, A., Bahador, A. (2018). Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Therapy, 31, 27(4), 293–302.

Gilger, B.C.; Wilkie, D.A. (2013). A topical aqueous calcineurin inhibitor for the treatment of naturally occurring keratoconjunctivitis sicca in dogs. Veterinary Ophthalmology, 16, 192–197.

Guffey, J.S., Wilborn, J. (2006). In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomedicine and Laser Surgery, 24(6), 684–688.

Gunaydin, G., Gedik, M.E., Ayan, S. (2021). Photodynamic Therapy for the Treatment and Diagnosis of Cancer–A Review of the Current Clinical Status. Frontiers in Chemistry, 9, 686303.

Hamblin, M.R., Hasan, T. (2004). Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochemical and Photobiological Sciences, 3(5), 436–450.

Hashimoto, M.C., Prates, R.A., Kato, I.T., Núñez, S.C., Courrol, L.C., Ribeiro, M.S. (2012). Antimicrobial photodynamic therapy on drug-resistant Pseudomonas aeruginosa-induced infection. An in vivo study. Photochemistry and Photobiology, 88(3), 590–595.

Hung, J.H., Wang, Z.X., Lo, Y.H., Lee, C.N., Chang, Y., Chang, R.Y., Huang, C.C., Wong, T.W. (2022). Rose Bengal-Mediated Photodynamic Therapy to Inhibit Candida albicans. Journal of Visualized Experiments, 24(181), e63558.

Ito, T. (2008). The dependence of photosensitizing efficacy of acridine orange and toluidine blue on the degree of sensitizer-cell interaction. Photochemistry and Photobiology, 31, 565–570.

Kim, S., Kim, J., Lim, W., Jeon, S., Kim, O., Koh, J.T., Kim, C.S., Choi, H., Kim, O. (2013). In vitro bactericidal effects of 625, 525, and 425 nm wavelength (red, green, and blue) light-emitting diode irradiation. Photomedicine and Laser Surgery, 31(11), 554–562.

Kim, Y.S.; Rubio, V. (2011). Cancer treatment using an optically inert rose bengal derivative combined with pulsed focused ultrasound. Journal of Controlled Release, 156, 315–322.

Kitanaka, Y., Takeuchi, Y., Hiratsuka, K., Aung, N., Sakamaki, Y., Nemoto, T., Meinzer, W., Izumi, Y., Iwata, T., Aoki, A. (2020). The effect of antimicrobial photodynamic therapy using yellow-green LED and rose bengal on Porphyromonas gingivalis, Photodiagnosis and Photodynamic Therapy, 32, 102033,

Kraiselburd, I., Moyano, L., Carrau, A., Tano, J., Orellano, E.G. (2017). Bacterial Photosensory Proteins and Their Role in Plant-pathogen Interactions. Photochemistry and Photobiology, 93, 666–674.

Kurosu, M., Mitachi, K., Yang, J., Pershing, E.V., Horowitz, B.D., Wachter, E.A., Lacey, J.W. 3rd, Ji, Y., Rodrigues, D.J. (2022). Antibacterial Activity of Pharmaceutical-Grade Rose Bengal: An Application of a Synthetic Dye in Antibacterial Therapies. Molecules, 5, 27(1), 322.

Liu, H.; Innamarato, P.P. (2016). Intralesional rose bengal in melanoma elicits tumor immunity via activation of dendritic cells by the release of high mobility group box 1. Oncotarget, 7, 37893–37905.

Liu, Y., Qin, R., Zaat, S.A.J., Breukink, E., Heger, M. (2015). Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. Journal of Clinical and Translational Research, 1, 1(3), 140–167.

López-Jiménez, L., Fusté, E., Martínez-Garriga, B., Arnabat-Domínguez, J., Vinuesa, T., Viñas, M. (2015). Effects of photodynamic therapy on Enterococcus faecalis biofilms. Lasers in Medical Science, 30(5), 1519–1526.

Lowy, F.D. (1998). Staphylococcus aureus infections. New England Journal of Medicine, 20, 339(8), 520–532.

Maker, A.V.; Prabhakar, B. (2015). The potential of intralesional rose bengal to stimulate T-cell mediated anti-tumor responses. Journal of Cellular Immunology, 6, 343–349.

Malik, Z., Ladan, H., Nitzan, Y. (1992). Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. Journal of Photochemistry and Photobiology B: Biology, 14(3), 262–266.

Martins Antunes de Melo, W.C., Celiešiūtė-Germanienė, R., Šimonis, P., Stirkė, A. (2021). Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence, 12(1), 2247–2272.

Merchat, M., Bertolini, G., Giacomini, P., Villaneuva, A., Jori, G. (1996). Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. Journal of Photochemistry and Photobiology B: Biology, 32(3), 153–157.

Mincev, M.; Zaharieva, Z. (1974). Comparison between the iodine-131-labeled rose bengal radioisotopic hepatogram indexes and those of other laboratory examinations in patients with hepatic cirrhosis. Folia Medica, 16, 35–41.

Minnock, A., Vernon, D.I., Schofield, J., Griffiths, J., Parish, J.H., Brown, S.T. (1996). Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. Journal of Photochemistry and Photobiology B, 32(3), 159–64.

Nakonechny, F., Barel, M., David, A., Koretz, S., Litvak, B., Ragozin, E., Etinger, A., Livne, O., Pinhasi, Y., Gellerman, G., Nisnevitch, M. (2019). Dark Antibacterial Activity of Rose Bengal. International Journal of Molecular Sciences, 29, 20(13), 3196.

Nitzan, Y., Gutterman, M., Malik, Z., Ehrenberg, B. (1992). Inactivation of gram-negative bacteria by photosensitized porphyrins. Photochemistry and Photobiology, 55(1), 89–96.

Patel, S.P., Carter, B.W., Murthy, R., Sheth, R., Agarwala, S.S., Lu, G., Redstone, E., Balmes, G.C., Rider, H., Rodrigues, D., Wachter, E.A. (2020). Percutaneous hepatic injection of rose bengal disodium (PV-10) in metastatic uveal melanoma. Journal of Clinical Oncology, 38, 3143.

Paulino, T.P., Magalhães, P.P., Thedei Júnior, G., Tedesco, A.C., Ciancaglini, P. (2005). Use of visible light-based photodynamic therapy to bacterial photoinactivation. Bambed – Biochemistry and Molecular Biology Education, 33(1), 46–49.

Pérez, C., Zúñiga, T., Palavecino, C.E. (2021). Photodynamic therapy for treatment of Staphylococcus aureus infections, Photodiagnosis and Photodynamic Therapy, 34, 102285,

Qin, J.; Kunda, N. (2017). Colon cancer cell treatment with rose bengal generates a protective immune response via immunogenic cell death. Cell Death and Disease, 8, e2584.

Sarowska, J., Choroszy-Krol, I., Jama-Kmiecik, A., Mączynska, B., Cholewa, S., Frej-Madrzak, M. (2022). Occurrence and characteristics of carbapenem-resistant Klebsiella pneumoniae strains isolated from hospitalized patients in Poland-A single centre study. Pathogens, 11, 859.

Taylor, T.A., Unakal, C.G. (2023). Staphylococcus aureus infection. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 January.

Tennert, C., Feldmann, K., Haamann, E., Al-Ahmad, A., Follo, M., Wrbas, K.T., Hellwig, E., Altenburger, M.J. (2014). Effect of photodynamic therapy (PDT) on Enterococcus faecalis biofilm in experimental primary and secondary endodontic infections. BMC Oral Health, 4(14), 132.

Vital-Fujii, D.G., Baptista, M.S. (2021). Progress in the photodynamic therapy treatment of Leishmaniasis. Brazilian Journal of Medical and Biological Research, 29, 54(12), e11570.

Varzandeh, M., Mohammadinejad, R., Esmaeilzadeh-Salestani, K., Dehshahri, A., Zarrabi, A., Aghaei-Afshar, A. (2021). Photodynamic therapy for leishmaniasis: Recent advances and future trends, Photodiagnosis and Photodynamic Therapy, 36, 102609.

Wang, D., Pan, H., Yan, Y., Zhang, F. (2021). Rose bengal-mediated photodynamic inactivation against periodontopathogens in vitro, Photodiagnosis and Photodynamic Therapy, 34, 102250.




How to Cite

Greczek-Stachura, M., Różanowski, B., & Kania, A. (2023). The effect of rose bengal activated with green diode laser light on selected Gram-positive and Gram-negative bacterial strains. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 8(1).



Experimental Biology