A current threat to public health: hospital acquired infections caused by multidrug resistant microorganisms, such as Klebsiella pneumoniae

Authors

  • Paulina Likus UKEN w Krakowie
  • Magdalena Greczek-Stachura
  • Anna Macieja
  • Anna Gogola-Staszczak

Keywords:

Enterobacteriaceae, epidemiology, OXA-48 carbapenemases

Abstract

This paper presents a bacteria case study involving the isolation of a Klebsiella pneumoniae strain producing both KPC and OXA-48 carbapenemases, cultured from clinical material obtained from a patient hospitalized with suspected bacterial infection. Microbiological diagnostics included culture on selective media, strain identification using MALDI-TOF technology (Autobio®), and antimicrobial susceptibility testing by broth microdilution with the Thermo Scientific™ Sensititre™ automated system. The isolate exhibited resistance to a broad spectrum of antibiotics, including carbapenems, cephalosporins, aminoglycosides, and colistin, while remaining susceptible only to cefiderocol. This case highlights the urgent need for implementing rational antibiotic therapy and coordinated efforts by antimicrobial stewardship teams. The paper also discusses national and international programs aimed at combating antibiotic resistance and evaluates their effectiveness in preserving the efficacy of infection treatment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bahr G., González L.J., Vila A.J. (2021). Metalloβlactamases in the Age of Multidrug Resi-stance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor De-sign. Chemical Reviews Journal, 121(13):7957–8094. DOI: 10.1021/acs.chemrev.1c00138

Baur D., Gladstone B.P., Burkert F., Carrara E., Foschi F., Döbele S., Tacconelli E. (2017). Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis. Lancet Infectious Diseases Journal,17(9):990–1001. DOI: 10.1016/S1473-3099(17)30325-0

Belay W. Y., Getachew M., Tegegne B.A., Teffera Z.H., Dagne A., Zeleke T.K., Abebe R.B., Gedif A.A., Fenta A., Yirdaw G., Tilahun A., Aschale Y. (2024). Mechanism of anti-bacterial resistance, strategies and nextgeneration antimicrobials to contain antimicrobial resistance: a review. Pharmacology, 2024;15:144478. https://doi.org/10.3389/fphar.2024.1444781

Blair J.M.A., Webber M.A., Baylay A.J., Ogbolu D.O., Piddock L.J.V. Molecular mechanisms of antibiotic resistance. (2015). Nature Reviews Microbiology, 13(1):42–51. DOI: 10.1038/nrmicro3380

Bush K., Bradford P.A. (2020). β-Lactams and β-lactamase Inhibitors: An Overview. Cold Spring Harbor Perspectives in Medicine, 6(8):a025247. DOI: 10.1101/cshperspect.a025247

Caliskan-Aydogan O., C Alocilja E. (2023). A Review of Carbapenem Resistance in Enterobac-terales and Its Detection Techniques. Microorganisms, 11(6):1491. DOI: 10.3390/microorganisms11061491

CLSI. Performance Standards for Antimicrobial Susceptibility Testing: 34th edition (CLSI Supplement M100). Clinical and Laboratory Standards Institute, Wayne, PA; 2024.

Costerton J.W., Stewart P. S., Greenberg E.P. (1999). Bacterial biofilms: a common cause of persistent infections. Science Direct Journal, 284(5418):1318-22. DOI: 10.1126/science.284.5418.1318

Crofts T.S., Gasparrini A.J., Dantas G. (2017). Next-generation approaches to understand and combat the antibiotic resistome. Nature Reviews Microbiology, 15(7):422–434. DOI: 10.1038/nrmicro.2017.28

Dortet L., Bréchard L., Poirel L., Nordmann P. (2014). Rapid detection of carbapenemase- pro-ducing Enterobacteriaceae from blood cultures. Clinical Microbiology and Infection, 20(4):340-4. DOI: 10.1111/1469-0691.12318

Duin D., Doi Y. (2017). The global epidemiology of carbapenemase-producing Enterobacteria-ceae. Virulence, 8(4):460–469. DOI: 10.1080/21505594.2016.1222343

EUCAST. Breakpoint tables for interpretation of MICs and zone diameters, Version 15.0. European Committee on Antimicrobial Susceptibility Testing; 2025. https://www.eucast.org

European Centre for Disease Prevention and Control. (ECDC) (2018). Emergence of resistance to ceftazidime- avibactam in carbapenem- resistant Enterobacteriaceae. https://www.ecdc.europa.eu/sites/default/files/documents/RRA-Emergence-of-resistance-to%20CAZ-AVI-in-CRE-Enterobacteriaceae.pdf

Evans B.A., Amyes S.G. (2014). OXA β-lactamases. Clinical Microbiology Reviews Journal, 27(2):241–263. DOI: 10.1128/CMR.00117-13

Fair R.J., Tor Y. (2014). Antibiotics and Bacterial Resistance in the 21st Century. Perspectives in Medicinal Chemistry, 28;6:25-64. DOI: 10.4137/PMC.S14459

Falagas M.E., Kasiakou S.K. (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clinical Infectious Diseases, 78(4):545–553. DOI: 10.1086/429323

Fernández L., Hancock R.E.W. (2012). Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clinical Microbiology Reviews Journal, 25(4):661–681. DOI: 10.1128/CMR.00043-12

Gabibov A.G., Dontsova O.A., Egorov A.M. (2020). Overcoming Antibiotic Resistance in Microorganisms: Molekular Mechanisms. Biochemistry (Moscow), 85(11):1289-1291. DOI: 10.1134/S0006297920110012

Gillings M.R. Class 1 integrons as invasive species (2017). Current Opinion Microbiology, 38:10-15. DOI: 10.1016/j.mib.2017.03.002

Hayden D., White B.P., Bennett K. (2020). Review of Ceftazidime-Avibactam, Meropenem-Vaborbactam, and Imipenem/Cilastatin-Relebactam to Target Klebsiella pneumoniaeCar-bapenemase-Producing Enterobacterales. Journal of Pharmacy Technology, 17,36(5):202-210. DOI: 10.1177/8755122520934726

Hu S., Xie W., Cheng Q., Zhang X., Dong X., Jing H., Wang J. (2023). Molecular epidemio-logy of carbapenem- resistant Enterobacter cloace complex in a tertiary hospital in Shan-dong, China. MBC Microbiology. 177 (2023). https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-023-02913-x

Huttner B., Harbarth S., Nathwani D. (2014). Success stories of implementation of antimicro-bial stewardship: a narrative review. Clinical Microbiology Infection, 20(10):954-62. DOI: 10.1111/1469-0691.12803

Ito A., Sato T., Ota M., Takemura M., Nishikawa T., Toba S., Kohira N., Miyagawa S., Ishi-bashi N., Matsumoto S., Nakamura R., Tsuji M., Yamano Y. (2017). In Vitro Antibac-terial Properties of Cefiderocol, a Novel Siderophore Cephalosporin, against Gram- Ne-gative Bacteria. Antymicrobial Agents Chemotherapy, 62(1):e01254-17 DOI: 10.1128/AAC.01454-17

Koenig C., Kuti J.L. (2024). Evolving resistance landscape in gram-negative pathogens: An update on β-lactam and β-lactam-inhibitor treatment combinations for carbapenem-resistant organisms. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 44:8. https://doi.org/10.1002/phar.2950

Kubin C. J., Garzia C., Uhlemann A-C. (2025). Acinetobacter baumannii treatment strategies: a review of therapeutic challenges and considerations. Antimicrobial Agents and Che-motherapy, 69:8. https://doi.org/10.1128/aac.01063-24

Laxminarayan R., Duse A., Wattal C., Zaidi A. K. M., Wertheim H. F. L., Sumpradit N., Vlie-ghe E., Hara G. L., Gould I. M., Goossens H., Greko C., So A., Bigdeli M., Tomson G., Woodhouse W., Ombaka E., Peralta Q., Qamar F. N., Mir F., Kariuki S., Bhutta Z. A., Coates A., Bergstrom R., Wright G. D., Brown E.D., Cars O. (2013). Antibiotic re-sistance—the need for global solutions. The Lancet Infectious Diseases, 13(12):1057–1098. DOI: 10.1016/S1473-3099(13)70318-9

Levy S.B., Marshall B. (2004). Antibacterial resistance worldwide: causes, challenges and re-sponses. Nature Medicine, 10(12): S122–S129. DOI: 10.1038/nm1145

Li X-Z., Plésiat P., Nikaido H. (2015). The challenge of effluxmediated antibiotic resistance in Gramnegative bacteria. Clinical Microbiology Reviews, 28(2):337–418 DOI: 10.1128/CMR.00117-14

Liofilchem. ComASP® Colistin Product Insert, REF 75001. Liofilchem S.r.l., Italy; 2024.

Mehta S.C., Rice K., Palzkill T. (2015). Natural variants of the KPC-2 carbapenemase have evolved increased catalytic efficiency for ceftazidime hydrolysis at the cost of enzyme stability. PLoS Pathogens, 12(5): e1005930. DOI: 10.1371/journal.ppat.1004949

Munoz-Price L.S., Poirel L., Bonomo R.A., Schwaber M.J., Daikos G.L., Cormican M., Giu-seppe C., Garau J., Gniadkowski M., Hayden M. K., Kumarasamy K., Livermore D. M., Maya J. J., Nordmann P., Patel J. B., Paterson D. L., Pitout J., Villegas M. V., Wang H., Woodford N., Quinn J. P. (2013). Clinical epidemiology of the global expan-sion of Klebsiella pneumoniae carbapenemases. The Lancet Infectious Diseases Journal, 13(9):785–796. DOI: 10.1016/S1473-3099(13)70190-7

Narodowy Program Ochrony Antybiotyków – przegląd działań w Polsce. . https://antybiotyki.edu.pl/category/2025/

Nordmann P., Naas T., Poirel L. (2011). Global spread of carbapenemase-producing Enterobac-teriaceae. Emerging Infectious Diseases,17(10):1791–1798. DOI: 10.3201/eid1710.110655

Nordmann P., Poirel L., Dortet L. (2012). Rapid detection of carbapenemase- producing Ente-robacteriaceae. Emerging Infectious Diseases, 18(9):1503-7 DOI: 10.3201/eid1809.120355

Poirel L., Potron A., Nordmann P. (2012). OXA-48-like carbapenemases: the phantom mena-ce. Journal of Antimicrobial Chemotherapy, 67(7):1597–1606. DOI: 10.1093/jac/dks121

Potron A., Poirel L., Nordmann P. (2013). Emerging broad-spectrum resistance in Pseudomo-nas aeruginosa and Acinetobacter baumannii: Mechanisms and Epidemio-logy. International Journal Antimicrobial Agents, 42(5):415–423. DOI: 10.10mu16/j.ijantimicag.2015.03.001

Prestinaci F., Pezzotti P., Pantosti A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Journal Of Global Health, 109(7):309–318. DOI: 0.1179/2047773215Y.0000000030

Pulcini C., Binda F., Lamkang A.S., Trett A., Charani E., Goff. D.A., Harbarth S., Hinrichsen S.L., Levy-Hara G., Mendelson M., Nathwani D., Gunturu R., Singh S., Srinivasan A., Thamlikitkul V., Thursky K., Vlieghe E., Wertheim H., Zeng M., Gandra S., Laxmina-rayan R. (2019). Developing core elements and checklist items for global hospital anti-microbial stewardship programmes: a consensus approach. Clinical Microbiology and Infection Journal, 21(5): e276–e287. DOI: 10.1016/j.cmi.2018.03.033

Otto M., Dickey S., Wolz C. (2023). Editorial: Quorum- sensing in Gram-positive pathogens- mechanisms, role in infection, and potential as a therapeutic target. Frontiers in Cellular and Infection Microbiology, 19:13:1236705. DOI: 10.3389/fcimb.2023.1236705

Queenan A.M., Bush K. (2007). Carbapenemases: the versatile β-lactamases. Clinical Microbio-logy Reviews; 20(3):440–458. DOI: 10.1128/CMR.00001-07

Santajit S., Indrawattana N. (2016). Mechanisms of antibiotic resistance in ESKAPE patho-gens. Biomed Research International, 2016:2475067 DOI: 10.1155/2016/2475067

Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D.L., Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y., Ouellette M., Outterson K., Patel J., Cavaleri M., Cox E.M., Houchens C.R., Grayson M.L., Hansen P., Singh N., Theuretzbacher U., Magrini N., WHO Pathogens Priority List Working Group. (2018). Discovery, re-search and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria. The Lancet Infectious Diseases Journal, 18(3):318-327. DOI: 10.1016/S1473-3099(17)30753-3

Tzouvelekis L.S., Markogiannakis A., Psichogiou M., Tassios P.T., Daikos G.L. (2012). Car-bapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clinical Microbiology Reviews, 25(4):682–707. DOI: 10.1128/CMR.05035-11

Walsh C. Molecular mechanisms that confer antibacterial drug resistance. (2000). Nature, 406(6797):775–781. DOI: 10.1038/35021219

WHO. Antimicrobial resistance. Fact sheet. 2020.

WHO. Antimicrobial stewardship programmes in health-care facilities in low- and middle-income countries: a WHO practical toolkit. 2020. https://www.who.int

WHO. Fifth meeting of the Strategic and Technical Advisory Group on Antimicrobial Resistan-ce (STAG-AMR).Geneva; June 2025. https://www.who.int

WHO. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report. 2023. https://www.who.int/publications/i/item/9789240062702

WHO. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and deve-lopment of new antibiotics. Geneva: World Health Organization; 2017. WHO. https://remed.org/wp-content/uploads/2017/03/lobal-priority-list-of-antibiotic-resistant-bacteria-2017.pdf

Yu C-H., Tsai M-S., Liao C-H., Yang C-J. (2024). Ceftazidime-Avibactam for the Treatment of Carbapenem-Resistant Klebsiella Pneumoniae Infection: A Retrospective, Single Center Study. Infection and Drug Resistance, 5;17:5363-5374. DOI: 10.2147/IDR.S475679

Downloads

Published

2025-09-25

How to Cite

Likus, P., Greczek-Stachura, M., Macieja, A., & Gogola-Staszczak, A. (2025). A current threat to public health: hospital acquired infections caused by multidrug resistant microorganisms, such as Klebsiella pneumoniae. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 10(1). Retrieved from https://aupcstudianaturae.uken.krakow.pl/article/view/12253

Issue

Section

Experimental Biology

Most read articles by the same author(s)