The Effects of climate change on functional health foods and medicinal plants – a short review

Authors

  • Mohamad Hesam Shahrajabian Senior Researcher, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China

Keywords:

climatic factors, global warming, plant yields, species ranges

Abstract

There is a growing opportunity to initiate studies to address the effects of climate change on medicinal plants’ phenology, habitat alteration, species range shifts, and secondary metabolite production. Awareness of the potential effects of warming (increased CO2, and ultraviolet radiation due to ozone layer depletion) on secondary plant components and metabolites is an influential task for the future. There is information that climate change is causing remarkable effects on life cycles and the distribution of plant species. They are also forcing ecosystems to adopt the changing life cycle of plants and the development of new physical traits. A quickly changing climate might benefit
species that can extend their ranges rapidly or that can tolerate a wide range of climatic conditions, both traits shared by various invasive plants taxon. This review provides a summary of the impact of climate change on medicinal and functional health food plants.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abid, M., Schneider, U.A., Scheffran, J. (2016). Adaptation to climate change and its impacts on food productivity

and crop income: Perspectives of farmers in rural Pakistan. Journal of Rural Studies, 47, 254–266.

https://doi.org/10.1016/j.jrurstud.2016.08.005

Alonso-Ayuso, M., Quemada, M., Vanclooster, M., Ruiz-Ramos, M., Rodriguez, A., Gabriel, J.L. (2018). Assessing

cover crop management under actual and climate change conditions. Science of Total Environment, 621,

–1341. https://doi.org/10.1016/j.scitotenv.2017.10.095

Alvi, S., Roson, R., Sartori, M., Jamil, F. (2021). An integrated assessment model for food security under climate

change for South Asia. Heliyon, 7(4), e06707. https://doi.org/10.1016/j.heliyon.2021.e06707

Applequist, W.L., Brinckmann, J.A., Cunningham, A.B., Hart, R.E., Heinrich, M., Katerere, D.R., Andel, T.V.

(2020). Scientists , warning on climate change and medicinal plants. Planta Medica, 86(1), 10–18.

https://doi.org/10.1055/a-1041-3406

Auerswald, K., Menzel, A. (2021). Change in erosion potential of crops due to climate change. Agricultural and

Forest Meteorology, 300, 108338. https://doi.org/10.1016/j.agrformet.2021.108338

Ayllon, D., Railsback, S.F., Harvey, B.C., Quiros, I.G., Nicola, G.G., Elvira, B., Almodovar, A. (2019). Mechanistic

simulations predict that thermal and hydrological effects of climate change on Mediterranean trout can not be

offset by adaptive behaviour, evolution, and increased food production. Science of Total Environment, 693,

https://doi.org/10.1016/j.scitotenv.2019.133648

Bates, A.E., Cooke, R.S.C., Duncan, M.I., Edgar, G.J., Bruno, J.F., Benedetti-Cecchi, L., Cote, I.M., Lefcheck, J.S.,

Costello, M.J., Barrett, N., Bird, T.J., Fenberg, P.B., Stuart-Smith, R.D. (2019). Climate resilience in marine

protected areas and the Protection Paradox. Biological Conservation, 236, 305–314.

https://doi.org/10.1016/j.biocon.2019.05.005

Bayir, G.B, Aksoy, A.N., Kocyigit, A. 2019. The Importance of Polyphenols as Functional Food in Health.

Bezmialem Science, 7(2), 157–163. https://doi.org/10.14235/bas.galenos.2018.2486

Butnariu, M., Sarac, I. (2019). Functional food. International Journal of Nutrition, 3(3), 7–16.

https://doi.org/10.14302/issn.2379-7835.ijn-19-2615

Cahyaningsih, R., Phillips, J., Brehm, J.M., Gaisberger, H., Maxted, N. (2021). Climate change impact on medicinal

plants in Indonesia. Global Ecology and Conservation, 30, e01752.

https://doi.org/10.1016/j.gecco.2021.e01752

Cencis, A., Chingwaru, W. (2010). The role of functional foods, nutraceuticals, and food supplements in intestinal

health. Nutrient, 2, 611–625. https://doi.org/10.3390/nu2060611

Chen, B., Zou, H., Zhang, B., Zhang, X., Jin, X., Wang, C., Zhang, X. (2022). Distribution pattern and change

prediction of Saposhnikovia divaricata suitable area in China under climate change. Ecological Indicators, 143,

https://doi.org/10.1016/j.ecolind.2022.109311

Choudhary, R., Tandon, R.V. (2009). Consumption of functional food and our health concerns. Pakistan Journal of

Physiology, 5(1), 76–83.

Cobbinah, P.B., Asibey, M.O., Opoku-Gyamfi, M., Peprah, C. (2019). Urban planning and climate change in Ghana.

Journal of Urban Managing, 8, 261–271. https://doi.org/10.1016/j.jum.2019.02.002

Das, R., Biswas, S., Banerjee, E.R. (2016). Nutraceutical-prophylactic and therapeutic role of functional food in

health. Journal of Nutrition and Food Sciences, 6(4), 1–17. https://doi.org/10.4172/2155-9600.1000527

Del Castillo, M.D., Iriondo-DeHond, A., Martirosyan, D.M. (2018). Are functional foods essential for sustainable

health? Annals of Nutrition and Food Science, 2(1), 1015. https://doi.org/10.3390/nu10101358

Dorji, T., Hopping, K.A., Meng, F., Wang, S., Jiang, L., Klein, J.A. (2020). Impacts of climate change on flowering

phenology and production in alpine plants: The importance of end of flowering. Agriculture Ecosystment and

Environment, 291, 106795. https://doi.org/10.1016/j.agee.2019.106795

Duchenne-Moutien, R.A., Neetoo, H. (2021). Climate change and emerging food safety issues: A review. Journal of

Food Protection, 84(11), 1884–1897. https://doi.org/10.4315/JFP-21-141

Feng, G., Xiong, Y.-J., Wei, H.-Y., Li, Y., Mao, L.-F. (2022). Endemic medicinal plant distribution correlated with

stable climate, precipitation, and cultural diversity. Plant Diversity, 45(4), 479–484.

https://doi.org/10.1016/j.pld.2022.09.007

Gao, J., Yang, X., Zheng, B., Liu, Z., Zhao, J., Sun, S., Li, K., Dong, C. (2019). Effects of climate change on the

extension of the potential double cropping region and crop water requirements in Northern China. Agricultural

and Forest Meteorology, 268, 146–155. https://doi.org/10.1016/j.agrformet.2019.01.009

Getachew, F., Bayabil, H.K., Hoogenboom, G., Teshome, F.T., Zewdu, E. (2021). Irrigation and shifting planting date

as climate change adaptation strategies for sorghum. Agriculture Water Management, 255, 106988.

https://doi.org/10.1016/j.agwat.2021.106988

Gohari, A., Eslamian, S., Abedi-Koupaei, J., Bavani, A.M., Wang, D., Madani, K. (2013). Climate change impacts

on crop production in Irans Zayandeh-Rud river basin. Science of Total Environment, 442, 405–419.

https://doi.org/10.1016/j.scitotenv.2021.10.029

Green, R., Scheelbeek, P., Bentham, J., Cuevas, S., Smith, P.P., Dangour, P.A. (2022). Growing health: global

linkages between patterns of food supply, sustainability, and vulnerability to climate change. Lancet Planetary

Health, 6(11), 901–908. https://doi.org/10.1016/S2542-5196(22)00223-6

Guo, H., Huang, Z., Tan, M., Tuan, H., Awe, G.O., Are, K.S., Abegnrin, T.P., Hussain, Z., Kuang, Z., Liu, D. (2021).

Crop resilience to climate change: A study of spatio-temporal variability of sugarcane yield in a subtropical

region, China. Smart Agricultural Technology, 1, 100014. https://doi.org/10.1016/j.atech.2021.100014

Kang, X., Qi, J., Li, S., Meng, F.-R. (2022). A watershed-scale assessment of climate change impacts on crop yields

in Atlantic Canada. Agriculture and Water Management, 269, 107680.

https://doi.org/10.1016/j.agwat.2022.107680

Katsini, L., Vhonsale, S., Akkermans, S., Roufou, S., Griffin, S., Valdramidis, V., Misiou, O., Koutsoumanis, K.,

Lopez, C.A.M., Polanska, M., Impe, J.F.M.V. (2022). Quantitative methods to predict the effect of climate

change on microbial food safety: A needs analysis. Trends in Food Science and Technology, 126, 113–125.

https://doi.org/10.1016/j.tifs.2021.07.041

Kaushika, G.S., Arora, H., Prasad, H. (2019). Analysis of climate change effects on crop water availability for paddy,

wheat and berseem. Agriculture and Water Management, 225, 105734.

https://doi.org/10.1016/j.agwat.2019.105734

Kotilainen, L., Rajalahti, R., Ragasa, C., and Pehu, E. (2006). Health enhancing foods: Opportunities for

strengthening the sector in developing countries. Agriculture and Rural Development discussion paper no. 30,

Washington, D.C.: World Bank Group.

http://documents.worldbank.org/curated/en/314421468324275640/Health-enhancing-foods-opportunities-for-

strengthening-developing-countries

Lemes, P., Barbosa, F.G., Naimi, B., Araujo, M.B. (2022). Dispersal abilities favor commensalism in animal-plant

interactions under climate change. Science of Total Environment, 835, 155157.

https://doi.org/10.1016/j.scitotenv.2022.155157

Li, Y., Tian, D., Feng, G., Yang, W., Feng, L. (2021). Climate change and cover crop effects on water use efficiency

of a corn-soybean rotation system. Agriculture and Water Management, 255, 107042.

https://doi.org/10.1016/j.agwat.2021.107042

Liang, S., Li, Y., Zhang, X., Sun, Z., Sun, N., Duan, Y., Xu, M., Wu, L. (2018). Response of crop yield and nitrogen

use efficiency for wheat-maize cropping system to future climate change in northern China. Agricultural and

Forest Meteorology, 262, 310–321. https://doi.org/10.1016/j.agrformet.2018.07.019

Lu, S., Bai, X., Li, W., Wang, N. (2019). Impacts of climate change on water resources and grain production. Technol

Forecast Social Change, 143, 76–84. https://doi.org/10.1016/j.techfore.2019.01.015

Mahmood, N., Arshad, M., Kachele, H., Ma, H., Ullah, A., Muller, K. (2019). Wheat yield response to input and

socioeconomic factors under changing climate: Evidence from rainfed environments of Pakistan. Science of

Total Environment, 688, 1275–1285. https://doi.org/10.1016/j.scitotenv.2019.06.266

Mahmoudpour, Z., Shirafkan, H., Mojahedi, M., Gorji, N., Mozaffarpur, S.A. (2018). Digesters in traditional Persian

medicine. Caspian Journal of Internal Medicine, 9(1), 1–6. https://doi.org/10.18502/tim.v7i3.10766

Massawe, F.J., Mayes, S., Cheng, A., Chai, H.H., Cleasby, P., Symonds, R., Ho, W.K., Siise, A., Wong, Q.N.,

Kendabie, P., Yanusa, Y., Jamalluddin, N., Singh, A., Azman, R., Azam-Ali, S.N. (2015). The potential for

undertulised crops to improve food security in the face of climate change. Procedia Environmental Sciences,

, 140–141. https://doi.org/10.1016/j.proenv.2015.07.228

Miron, I.J., Linares, C., Diaz, J. (2023). The influence of climate change on food production and food safety.

Environmental Research, 216(3), 114674. https://doi.org/10.1016/j.envres.2022.114674

Mudge, E., Applequist, W.L., Finley, J., Lister, P., Townesmith, A.K., Walker, K.M., Brown, P.N. (2016). Variation

of select flavonols and chlorogenic acid content of elderberry collected throughout the Eastern United States.

Journal of Food Composition and Analysis, 47, 2–59. https://doi.org/10.1016/j.jfca.2015.12.003

Newbery, F., Qi, A., Fitt, B.D.L. (2016). Modelling impacts of climate change on arable crop diseases: progress,

challenges and applications. Current Opinion in Plant Biology, 32, 101–109.

https://doi.org/10.1016/j.pbi.2016.07.002

Phillips, J.D. (2019). State factor network analysis of ecosystem response to climate change. Ecological Complexity,

, 100789. https://doi.org/10.1016/j.ecocom.2019.100789

Ponce, C. (2020). Intra-seasonal climate variability and crop diversification strategies in the Peruvian Andes: A word

of caution on the sustainability of adaptation to climate change. World Development, 127, 104740.

https://doi.org/10.1016/j.worlddev.2019.104740

Raes, D., Waongo, M., Vanuytrecht, E., Moreno, P.M. (2021). Improved management alleviate some but not all of

the adverse effects of climate change on crop yields in smallholder farms in West Africa. Agricultural and

Forest Meteorology, 309, 108563. https://doi.org/10.1016/j.agrformet.2021.108563

Raiten, D.J., Bremer, A.A. (2023). Exploring the intersection of climate/environmental change, food systems,

nutrition, and health: global challenge, opportunity, or both? American Journal of Clinical Nutrition, 117(2),

–226. https://doi.org/10.1016/j.ajcnut.2022.11.024

Ranga Rao, A., Ravishankar, G.A. (2018). Algae as source of functional ingredients for health benefits. Agricultural

Research and Technology Open Access Journal, 14(2), 555911. https://doi.org/10.19080/artoaj.2018.14.555911

Rawat, N., Purohit, S., Painuly, V., Negi, G.S., Bisht, M.P.S. (2022). Habitat distribution modeling of endangered

medicinal plant Picrorhiza kurroa (Royle ex Benth) under climate change scenarios in Uttarakhand Himalaya,

India. Ecological Informatics, 68, 101550. https://doi.org/10.1016/j.ecoinf.2021.101550

Raza, M.M., Bebber, D.P. (2022). Climate change and plant pathogens. Current Opinion in Microbiology, 70,

https://doi.org/10.1016/j.mib.2022.102233

Rolo, V., Moreno, G. (2019). Shrub encroachment and climate change increase the exposure to drought of

Mediterranean wood-pastures. Science of the Total Environment, 660, 550–558.

https://doi.org/10.1016/j.scitotenv.2019.01.029

Ruszkiewicz, J.A., Tinkov, A.A., Skalny, A.V., Siokas, V., Dardiotis, E., Tsatsakis, A., Bowman, A.B., da Rocha,

J.B.T., Aschner, M. (2019). Brain diseases in changing climate. Environmental Research, 177, 108637.

https://doi.org/10.1016/j.envres.2019.108637

Seidel, S.J., Gaiser, T., Ahrends, H.E., Huging, H., Siebert, S., Bauke, S.L., Gocke, M.I., Koch, M., Schweitzer, K.,

Schaaf, G., Ewert, F. (2021). Crop response to P fertilizer omission under a changing climate- Experimental and

modeling results over 115 years of a long-term fertilizer experiment. Field Crops Research, 268, 108174.

https://doi.org/10.1016/j.fcr.2021.108174

Semba, R.D., Askari, S., Gibson, S., Bloem, M.W., Kraemer, K. (2022). The potential impact of climate change on

the micronutrient-rich food supply. Advances in Nutrition, 13(1), 80–100.

https://doi.org/10.1093/advances/nmab104

Shahzad, Z., Rouached, H. (2022). Protecting plant nutrition from the effects of climate change. Current Biology,

(13), E725–R727. https://doi.org/10.1016/j.cub.2022.05.056

Shandilya, U.K., Sharma, A. (2017). Functional foods and their benefits: an overview. Journal of Nutritional Health

and Food Engineering, 7(4), 353–356. https://doi.org/10.15406/jnhfe.2017.07.00247

Sharma, H., Rao, P.S., Singh, A.K. (2021). Fifty years of research on Tinospora cordifolia: from botanical plant to

functional ingredient in foods. Trends in Food Science and Technology, Part A, 118, 189–206.

https://doi.org/10.1016/j.tifs.2021.10.003

Shen, T., Yu, H., Wang, Y.-Z. (2021). Assessing the impacts of climate change and habitat suitability on the

distribution and quality of medicinal plant using multiple information integration: Take Gentiana rigescens as

an example. Ecological Indicators, 123, 107376. https://doi.org/10.1016/j.ecolind.2021.107376

Sulser, T.B., Beach, R.H., Wiebe, K., Dunston, S., Fukagawa, N.K. (2021). Disability-adjusted life years due to

chronic and hidden hunger under food system evolution with climate change and adaptation to 2050. The

American Journal of Clinical Nutrition, 114(2), 550–563. https://doi.org/10.1093/ajcn/nqab101

Sun, W., Shahrajabian, M.H. (2023). The application of arbuscular mycorrhizal fungi as microbial biostimulant,

sustainable approaches in modern agriculture. Plants, 12(17), 3101. https://doi.org/10.3390/plants12173101

Sun, W., Shahrajabian, M.H., Petropoulos, S.A., Shahrajabian, N. (2023). Developing sustainable agriculture systems

in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants, 12(13),

https://doi.org/10.3390/plants12132469

Sun, W., Shahrajabian, M.H., Soleymani, A. (2024). The roles of plant-growth-promoting rhizobacteria (PGPR)-

based biostimulants for agricultural production systems. Plants, 13(5), 613.

https://doi.org/10.3390/plants13050613

Supachaturat, S., Pichyangkura, R., Chandrachai, A., Pentrakoon, D. (2017). Perspective on functional food

commercialization in Thailand. International Food Research Journal, 24(4), 1374–1382.

https://doi.org/10.7763/ijssh.2015.v5.560

Teixeira, E., Kersebaum, K.C., Ausseil, A.-G., Cichota, R., Guo, J., Johnstone, P., George, M., Liu, J., Malcolm, B.,

Khaembah, E., Meiyalaghan, S., Richards, K., Zyskowski, R., Michel, A., Sood, A., Tait, A., Ewert, F. (2021).

Understanding spatial and temporal variability of N leaching reduction by winter cover crops under climate

change. Science of Total Environment, 771, 144770. https://doi.org/10.1016/j.scitotenv.2020.144770

Toreti, A., Bassu, S., Ceglar, A., Zampieri, M. (2019). Climate change and crop yields. Encyclopedia of Food

Security and Sustainability, 1, 223–227. https://doi.org/10.1016/B978-0-08-100596-5.22010-6

Tripathi, A., Tripathi, D.K., Chauhan, D.K., Kumar, N., Singh, G.S. (2016). Paradigms of climate change impacts on

some major food sources of the world: A review on current knowledge and future prospects. Agriculture,

Ecosystem, Environment, 216, 356–373. https://doi.org/10.1016/j.agee.2015.09.034

Wang, D., Shi, C., Alamgir, K., Kwon, S.M., Pan, L., Zhu, Y., Yang, X. (2022). Global assessment of the distribution

and conservation status of a key medicinal plant (Artemisia annua L.): The roles of climate and anthropogenic

activities. Science of Total Environment, 821, 153378. https://doi.org/10.1016/j.scitotenv.2022.153378

Wang, Y., Liu, S., Shi, H. (2023). Comparison of climate change impacts on the growth of C3 and C4 crops in China.

Ecological Informatics, 74, 101968. https://doi.org/10.1016/j.ecoinf.2022.101968

Weber, L., Bartek, L., Brancoli, P., Sjolund, A., Eriksson, M. (2023). Climate change impact of food distribution:

The case of reverse logistics for bread in Sweden. Sustainable Production and Consumption, 36, 386–396.

https://doi.org/10.1016/j.spc.2023.01.018

Wei, T., Cherry, T.L., Glomrod, S., Zhang, T. (2014). Climate change impacts on crop yield: Evidence from China.

Science of Total Environment, 499, 133–140. https://doi.org/10.1016/j.scitotenv.2014.08.035

Wu, M., Gu, X., Zhang, Z., Si, M., Zhang, Y., Tian, W., Ma, D. (2022). The effects of climate change on the quality

of Ziziphus jujuba var. Spinosa in China. Ecological Indicators, 139, 108934.

https://doi.org/10.1016/j.ecolind.2022.108934

Xia, C., Huang, Y., Qi, Y., Yang, X., Xue, T., Hu, R., Deng, H., Bussmann, R.W., Yu, S. (2022). Developing long-

term conservation priority planning for medicinal plants in China by combining conservation status with

diversity hotspot analyses and climate change prediction. BMC Biology, 20(89), 1–20.

https://doi.org/10.1186/s12915-022-01285-4

Yang, X., Chen, F., Lin, X., Liu, Z., Zhang, H., Zhao, J., Li, K., Ye, Q., Li, Y., Lv, S., Yang, P., Wu, W., Li, Z., Lal,

R., Tang, H. (2015). Potential benefits of climate change for crop productivity in China. Agricultural and

Forest Meteorology, 208, 76–86. https://doi.org/10.1016/j.agrformet.2015.04.024

Yeung, A.W.K., Mocan, A., Atanasov, A.G. (2018). Let food be thy medicine and medicine be thy food: A

bibliometric analysis of the most cited papers focusing on nutraceuticals and functional foods. Food Chemistry,

, 455–465. https://doi.org/10.1016/j.foodchem.2018.06.139

Yin, R., Gruss, I., Eisenhauer, N., Kardol, P., Thakur, M.P., Schmidt, A., Xu, Z., Siebert, J., Zhang, C., Wu, G.-L.,

Schadler, M. (2019). Land use modulates the effects of climate change on density but not community

composition of Collembola. Soil Biology and Biochemistry, 138, 107598.

https://doi.org/10.1016/j.soilbio.2019.107598

Zhang, J., Liu, Y. (2022). Decoupling of impact factors reveals the response of cash crops phenology to climate

change and adaptive management practice. Agricultural and Forest Meteorology, 322, 109010.

https://doi.org/10.1016/j.agrformet.2022.109010

Zhang, K., Zhang, Y., Zhou, C., Meng, J., Sun, J., Zhou, T., Tao, J. (2019). Impact of climate factors on future

distributions of Paeonia ostii across China estimated by MaxEnt. Ecological Informatics, 50, 62–67.

https://doi.org/10.1016/j.ecoinf.2019.01.004

Zhang, Z., Li, Y., Chen, X., Wang, Y., Niu, B., Liu, D.L., He, J., Pulatov, B., Hassan, I., Meng, Q. (2023). Impact of

climate change and planting date shifts on growth and yields of double cropping rice in southeastern China in

future. Agricultural Systems, 205, 103581. https://doi.org/10.1016/j.agsy.2022.103581

Zu, K., Wang, Z., Zhu, X., Lenoir, J., Shrestha, N., Lyu, T., Luo, A., Li, Y., Ji, C., Peng, S., Meng, J., Zhou, J. (2021).

Upward shift and elevational range contractions of subtropical mountain plants in response to climate change.

Science of Total Environment, 783, 146896. https://doi.org/10.1016/j.scitotenv.2021.146896

Downloads

Published

2024-11-14

How to Cite

Shahrajabian, M. H. (2024). The Effects of climate change on functional health foods and medicinal plants – a short review. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 9(1). Retrieved from https://aupcstudianaturae.uken.krakow.pl/article/view/11370

Issue

Section

Various