The Effects of climate change on functional health foods and medicinal plants – a short review
Keywords:
climatic factors, global warming, plant yields, species rangesAbstract
There is a growing opportunity to initiate studies to address the effects of climate change on medicinal plants’ phenology, habitat alteration, species range shifts, and secondary metabolite production. Awareness of the potential effects of warming (increased CO2, and ultraviolet radiation due to ozone layer depletion) on secondary plant components and metabolites is an influential task for the future. There is information that climate change is causing remarkable effects on life cycles and the distribution of plant species. They are also forcing ecosystems to adopt the changing life cycle of plants and the development of new physical traits. A quickly changing climate might benefit
species that can extend their ranges rapidly or that can tolerate a wide range of climatic conditions, both traits shared by various invasive plants taxon. This review provides a summary of the impact of climate change on medicinal and functional health food plants.
Downloads
Metrics
References
Abid, M., Schneider, U.A., Scheffran, J. (2016). Adaptation to climate change and its impacts on food productivity
and crop income: Perspectives of farmers in rural Pakistan. Journal of Rural Studies, 47, 254–266.
https://doi.org/10.1016/j.jrurstud.2016.08.005
Alonso-Ayuso, M., Quemada, M., Vanclooster, M., Ruiz-Ramos, M., Rodriguez, A., Gabriel, J.L. (2018). Assessing
cover crop management under actual and climate change conditions. Science of Total Environment, 621,
–1341. https://doi.org/10.1016/j.scitotenv.2017.10.095
Alvi, S., Roson, R., Sartori, M., Jamil, F. (2021). An integrated assessment model for food security under climate
change for South Asia. Heliyon, 7(4), e06707. https://doi.org/10.1016/j.heliyon.2021.e06707
Applequist, W.L., Brinckmann, J.A., Cunningham, A.B., Hart, R.E., Heinrich, M., Katerere, D.R., Andel, T.V.
(2020). Scientists , warning on climate change and medicinal plants. Planta Medica, 86(1), 10–18.
https://doi.org/10.1055/a-1041-3406
Auerswald, K., Menzel, A. (2021). Change in erosion potential of crops due to climate change. Agricultural and
Forest Meteorology, 300, 108338. https://doi.org/10.1016/j.agrformet.2021.108338
Ayllon, D., Railsback, S.F., Harvey, B.C., Quiros, I.G., Nicola, G.G., Elvira, B., Almodovar, A. (2019). Mechanistic
simulations predict that thermal and hydrological effects of climate change on Mediterranean trout can not be
offset by adaptive behaviour, evolution, and increased food production. Science of Total Environment, 693,
https://doi.org/10.1016/j.scitotenv.2019.133648
Bates, A.E., Cooke, R.S.C., Duncan, M.I., Edgar, G.J., Bruno, J.F., Benedetti-Cecchi, L., Cote, I.M., Lefcheck, J.S.,
Costello, M.J., Barrett, N., Bird, T.J., Fenberg, P.B., Stuart-Smith, R.D. (2019). Climate resilience in marine
protected areas and the Protection Paradox. Biological Conservation, 236, 305–314.
https://doi.org/10.1016/j.biocon.2019.05.005
Bayir, G.B, Aksoy, A.N., Kocyigit, A. 2019. The Importance of Polyphenols as Functional Food in Health.
Bezmialem Science, 7(2), 157–163. https://doi.org/10.14235/bas.galenos.2018.2486
Butnariu, M., Sarac, I. (2019). Functional food. International Journal of Nutrition, 3(3), 7–16.
https://doi.org/10.14302/issn.2379-7835.ijn-19-2615
Cahyaningsih, R., Phillips, J., Brehm, J.M., Gaisberger, H., Maxted, N. (2021). Climate change impact on medicinal
plants in Indonesia. Global Ecology and Conservation, 30, e01752.
https://doi.org/10.1016/j.gecco.2021.e01752
Cencis, A., Chingwaru, W. (2010). The role of functional foods, nutraceuticals, and food supplements in intestinal
health. Nutrient, 2, 611–625. https://doi.org/10.3390/nu2060611
Chen, B., Zou, H., Zhang, B., Zhang, X., Jin, X., Wang, C., Zhang, X. (2022). Distribution pattern and change
prediction of Saposhnikovia divaricata suitable area in China under climate change. Ecological Indicators, 143,
https://doi.org/10.1016/j.ecolind.2022.109311
Choudhary, R., Tandon, R.V. (2009). Consumption of functional food and our health concerns. Pakistan Journal of
Physiology, 5(1), 76–83.
Cobbinah, P.B., Asibey, M.O., Opoku-Gyamfi, M., Peprah, C. (2019). Urban planning and climate change in Ghana.
Journal of Urban Managing, 8, 261–271. https://doi.org/10.1016/j.jum.2019.02.002
Das, R., Biswas, S., Banerjee, E.R. (2016). Nutraceutical-prophylactic and therapeutic role of functional food in
health. Journal of Nutrition and Food Sciences, 6(4), 1–17. https://doi.org/10.4172/2155-9600.1000527
Del Castillo, M.D., Iriondo-DeHond, A., Martirosyan, D.M. (2018). Are functional foods essential for sustainable
health? Annals of Nutrition and Food Science, 2(1), 1015. https://doi.org/10.3390/nu10101358
Dorji, T., Hopping, K.A., Meng, F., Wang, S., Jiang, L., Klein, J.A. (2020). Impacts of climate change on flowering
phenology and production in alpine plants: The importance of end of flowering. Agriculture Ecosystment and
Environment, 291, 106795. https://doi.org/10.1016/j.agee.2019.106795
Duchenne-Moutien, R.A., Neetoo, H. (2021). Climate change and emerging food safety issues: A review. Journal of
Food Protection, 84(11), 1884–1897. https://doi.org/10.4315/JFP-21-141
Feng, G., Xiong, Y.-J., Wei, H.-Y., Li, Y., Mao, L.-F. (2022). Endemic medicinal plant distribution correlated with
stable climate, precipitation, and cultural diversity. Plant Diversity, 45(4), 479–484.
https://doi.org/10.1016/j.pld.2022.09.007
Gao, J., Yang, X., Zheng, B., Liu, Z., Zhao, J., Sun, S., Li, K., Dong, C. (2019). Effects of climate change on the
extension of the potential double cropping region and crop water requirements in Northern China. Agricultural
and Forest Meteorology, 268, 146–155. https://doi.org/10.1016/j.agrformet.2019.01.009
Getachew, F., Bayabil, H.K., Hoogenboom, G., Teshome, F.T., Zewdu, E. (2021). Irrigation and shifting planting date
as climate change adaptation strategies for sorghum. Agriculture Water Management, 255, 106988.
https://doi.org/10.1016/j.agwat.2021.106988
Gohari, A., Eslamian, S., Abedi-Koupaei, J., Bavani, A.M., Wang, D., Madani, K. (2013). Climate change impacts
on crop production in Irans Zayandeh-Rud river basin. Science of Total Environment, 442, 405–419.
https://doi.org/10.1016/j.scitotenv.2021.10.029
Green, R., Scheelbeek, P., Bentham, J., Cuevas, S., Smith, P.P., Dangour, P.A. (2022). Growing health: global
linkages between patterns of food supply, sustainability, and vulnerability to climate change. Lancet Planetary
Health, 6(11), 901–908. https://doi.org/10.1016/S2542-5196(22)00223-6
Guo, H., Huang, Z., Tan, M., Tuan, H., Awe, G.O., Are, K.S., Abegnrin, T.P., Hussain, Z., Kuang, Z., Liu, D. (2021).
Crop resilience to climate change: A study of spatio-temporal variability of sugarcane yield in a subtropical
region, China. Smart Agricultural Technology, 1, 100014. https://doi.org/10.1016/j.atech.2021.100014
Kang, X., Qi, J., Li, S., Meng, F.-R. (2022). A watershed-scale assessment of climate change impacts on crop yields
in Atlantic Canada. Agriculture and Water Management, 269, 107680.
https://doi.org/10.1016/j.agwat.2022.107680
Katsini, L., Vhonsale, S., Akkermans, S., Roufou, S., Griffin, S., Valdramidis, V., Misiou, O., Koutsoumanis, K.,
Lopez, C.A.M., Polanska, M., Impe, J.F.M.V. (2022). Quantitative methods to predict the effect of climate
change on microbial food safety: A needs analysis. Trends in Food Science and Technology, 126, 113–125.
https://doi.org/10.1016/j.tifs.2021.07.041
Kaushika, G.S., Arora, H., Prasad, H. (2019). Analysis of climate change effects on crop water availability for paddy,
wheat and berseem. Agriculture and Water Management, 225, 105734.
https://doi.org/10.1016/j.agwat.2019.105734
Kotilainen, L., Rajalahti, R., Ragasa, C., and Pehu, E. (2006). Health enhancing foods: Opportunities for
strengthening the sector in developing countries. Agriculture and Rural Development discussion paper no. 30,
Washington, D.C.: World Bank Group.
strengthening-developing-countries
Lemes, P., Barbosa, F.G., Naimi, B., Araujo, M.B. (2022). Dispersal abilities favor commensalism in animal-plant
interactions under climate change. Science of Total Environment, 835, 155157.
https://doi.org/10.1016/j.scitotenv.2022.155157
Li, Y., Tian, D., Feng, G., Yang, W., Feng, L. (2021). Climate change and cover crop effects on water use efficiency
of a corn-soybean rotation system. Agriculture and Water Management, 255, 107042.
https://doi.org/10.1016/j.agwat.2021.107042
Liang, S., Li, Y., Zhang, X., Sun, Z., Sun, N., Duan, Y., Xu, M., Wu, L. (2018). Response of crop yield and nitrogen
use efficiency for wheat-maize cropping system to future climate change in northern China. Agricultural and
Forest Meteorology, 262, 310–321. https://doi.org/10.1016/j.agrformet.2018.07.019
Lu, S., Bai, X., Li, W., Wang, N. (2019). Impacts of climate change on water resources and grain production. Technol
Forecast Social Change, 143, 76–84. https://doi.org/10.1016/j.techfore.2019.01.015
Mahmood, N., Arshad, M., Kachele, H., Ma, H., Ullah, A., Muller, K. (2019). Wheat yield response to input and
socioeconomic factors under changing climate: Evidence from rainfed environments of Pakistan. Science of
Total Environment, 688, 1275–1285. https://doi.org/10.1016/j.scitotenv.2019.06.266
Mahmoudpour, Z., Shirafkan, H., Mojahedi, M., Gorji, N., Mozaffarpur, S.A. (2018). Digesters in traditional Persian
medicine. Caspian Journal of Internal Medicine, 9(1), 1–6. https://doi.org/10.18502/tim.v7i3.10766
Massawe, F.J., Mayes, S., Cheng, A., Chai, H.H., Cleasby, P., Symonds, R., Ho, W.K., Siise, A., Wong, Q.N.,
Kendabie, P., Yanusa, Y., Jamalluddin, N., Singh, A., Azman, R., Azam-Ali, S.N. (2015). The potential for
undertulised crops to improve food security in the face of climate change. Procedia Environmental Sciences,
, 140–141. https://doi.org/10.1016/j.proenv.2015.07.228
Miron, I.J., Linares, C., Diaz, J. (2023). The influence of climate change on food production and food safety.
Environmental Research, 216(3), 114674. https://doi.org/10.1016/j.envres.2022.114674
Mudge, E., Applequist, W.L., Finley, J., Lister, P., Townesmith, A.K., Walker, K.M., Brown, P.N. (2016). Variation
of select flavonols and chlorogenic acid content of elderberry collected throughout the Eastern United States.
Journal of Food Composition and Analysis, 47, 2–59. https://doi.org/10.1016/j.jfca.2015.12.003
Newbery, F., Qi, A., Fitt, B.D.L. (2016). Modelling impacts of climate change on arable crop diseases: progress,
challenges and applications. Current Opinion in Plant Biology, 32, 101–109.
https://doi.org/10.1016/j.pbi.2016.07.002
Phillips, J.D. (2019). State factor network analysis of ecosystem response to climate change. Ecological Complexity,
, 100789. https://doi.org/10.1016/j.ecocom.2019.100789
Ponce, C. (2020). Intra-seasonal climate variability and crop diversification strategies in the Peruvian Andes: A word
of caution on the sustainability of adaptation to climate change. World Development, 127, 104740.
https://doi.org/10.1016/j.worlddev.2019.104740
Raes, D., Waongo, M., Vanuytrecht, E., Moreno, P.M. (2021). Improved management alleviate some but not all of
the adverse effects of climate change on crop yields in smallholder farms in West Africa. Agricultural and
Forest Meteorology, 309, 108563. https://doi.org/10.1016/j.agrformet.2021.108563
Raiten, D.J., Bremer, A.A. (2023). Exploring the intersection of climate/environmental change, food systems,
nutrition, and health: global challenge, opportunity, or both? American Journal of Clinical Nutrition, 117(2),
–226. https://doi.org/10.1016/j.ajcnut.2022.11.024
Ranga Rao, A., Ravishankar, G.A. (2018). Algae as source of functional ingredients for health benefits. Agricultural
Research and Technology Open Access Journal, 14(2), 555911. https://doi.org/10.19080/artoaj.2018.14.555911
Rawat, N., Purohit, S., Painuly, V., Negi, G.S., Bisht, M.P.S. (2022). Habitat distribution modeling of endangered
medicinal plant Picrorhiza kurroa (Royle ex Benth) under climate change scenarios in Uttarakhand Himalaya,
India. Ecological Informatics, 68, 101550. https://doi.org/10.1016/j.ecoinf.2021.101550
Raza, M.M., Bebber, D.P. (2022). Climate change and plant pathogens. Current Opinion in Microbiology, 70,
https://doi.org/10.1016/j.mib.2022.102233
Rolo, V., Moreno, G. (2019). Shrub encroachment and climate change increase the exposure to drought of
Mediterranean wood-pastures. Science of the Total Environment, 660, 550–558.
https://doi.org/10.1016/j.scitotenv.2019.01.029
Ruszkiewicz, J.A., Tinkov, A.A., Skalny, A.V., Siokas, V., Dardiotis, E., Tsatsakis, A., Bowman, A.B., da Rocha,
J.B.T., Aschner, M. (2019). Brain diseases in changing climate. Environmental Research, 177, 108637.
https://doi.org/10.1016/j.envres.2019.108637
Seidel, S.J., Gaiser, T., Ahrends, H.E., Huging, H., Siebert, S., Bauke, S.L., Gocke, M.I., Koch, M., Schweitzer, K.,
Schaaf, G., Ewert, F. (2021). Crop response to P fertilizer omission under a changing climate- Experimental and
modeling results over 115 years of a long-term fertilizer experiment. Field Crops Research, 268, 108174.
https://doi.org/10.1016/j.fcr.2021.108174
Semba, R.D., Askari, S., Gibson, S., Bloem, M.W., Kraemer, K. (2022). The potential impact of climate change on
the micronutrient-rich food supply. Advances in Nutrition, 13(1), 80–100.
https://doi.org/10.1093/advances/nmab104
Shahzad, Z., Rouached, H. (2022). Protecting plant nutrition from the effects of climate change. Current Biology,
(13), E725–R727. https://doi.org/10.1016/j.cub.2022.05.056
Shandilya, U.K., Sharma, A. (2017). Functional foods and their benefits: an overview. Journal of Nutritional Health
and Food Engineering, 7(4), 353–356. https://doi.org/10.15406/jnhfe.2017.07.00247
Sharma, H., Rao, P.S., Singh, A.K. (2021). Fifty years of research on Tinospora cordifolia: from botanical plant to
functional ingredient in foods. Trends in Food Science and Technology, Part A, 118, 189–206.
https://doi.org/10.1016/j.tifs.2021.10.003
Shen, T., Yu, H., Wang, Y.-Z. (2021). Assessing the impacts of climate change and habitat suitability on the
distribution and quality of medicinal plant using multiple information integration: Take Gentiana rigescens as
an example. Ecological Indicators, 123, 107376. https://doi.org/10.1016/j.ecolind.2021.107376
Sulser, T.B., Beach, R.H., Wiebe, K., Dunston, S., Fukagawa, N.K. (2021). Disability-adjusted life years due to
chronic and hidden hunger under food system evolution with climate change and adaptation to 2050. The
American Journal of Clinical Nutrition, 114(2), 550–563. https://doi.org/10.1093/ajcn/nqab101
Sun, W., Shahrajabian, M.H. (2023). The application of arbuscular mycorrhizal fungi as microbial biostimulant,
sustainable approaches in modern agriculture. Plants, 12(17), 3101. https://doi.org/10.3390/plants12173101
Sun, W., Shahrajabian, M.H., Petropoulos, S.A., Shahrajabian, N. (2023). Developing sustainable agriculture systems
in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants, 12(13),
https://doi.org/10.3390/plants12132469
Sun, W., Shahrajabian, M.H., Soleymani, A. (2024). The roles of plant-growth-promoting rhizobacteria (PGPR)-
based biostimulants for agricultural production systems. Plants, 13(5), 613.
https://doi.org/10.3390/plants13050613
Supachaturat, S., Pichyangkura, R., Chandrachai, A., Pentrakoon, D. (2017). Perspective on functional food
commercialization in Thailand. International Food Research Journal, 24(4), 1374–1382.
https://doi.org/10.7763/ijssh.2015.v5.560
Teixeira, E., Kersebaum, K.C., Ausseil, A.-G., Cichota, R., Guo, J., Johnstone, P., George, M., Liu, J., Malcolm, B.,
Khaembah, E., Meiyalaghan, S., Richards, K., Zyskowski, R., Michel, A., Sood, A., Tait, A., Ewert, F. (2021).
Understanding spatial and temporal variability of N leaching reduction by winter cover crops under climate
change. Science of Total Environment, 771, 144770. https://doi.org/10.1016/j.scitotenv.2020.144770
Toreti, A., Bassu, S., Ceglar, A., Zampieri, M. (2019). Climate change and crop yields. Encyclopedia of Food
Security and Sustainability, 1, 223–227. https://doi.org/10.1016/B978-0-08-100596-5.22010-6
Tripathi, A., Tripathi, D.K., Chauhan, D.K., Kumar, N., Singh, G.S. (2016). Paradigms of climate change impacts on
some major food sources of the world: A review on current knowledge and future prospects. Agriculture,
Ecosystem, Environment, 216, 356–373. https://doi.org/10.1016/j.agee.2015.09.034
Wang, D., Shi, C., Alamgir, K., Kwon, S.M., Pan, L., Zhu, Y., Yang, X. (2022). Global assessment of the distribution
and conservation status of a key medicinal plant (Artemisia annua L.): The roles of climate and anthropogenic
activities. Science of Total Environment, 821, 153378. https://doi.org/10.1016/j.scitotenv.2022.153378
Wang, Y., Liu, S., Shi, H. (2023). Comparison of climate change impacts on the growth of C3 and C4 crops in China.
Ecological Informatics, 74, 101968. https://doi.org/10.1016/j.ecoinf.2022.101968
Weber, L., Bartek, L., Brancoli, P., Sjolund, A., Eriksson, M. (2023). Climate change impact of food distribution:
The case of reverse logistics for bread in Sweden. Sustainable Production and Consumption, 36, 386–396.
https://doi.org/10.1016/j.spc.2023.01.018
Wei, T., Cherry, T.L., Glomrod, S., Zhang, T. (2014). Climate change impacts on crop yield: Evidence from China.
Science of Total Environment, 499, 133–140. https://doi.org/10.1016/j.scitotenv.2014.08.035
Wu, M., Gu, X., Zhang, Z., Si, M., Zhang, Y., Tian, W., Ma, D. (2022). The effects of climate change on the quality
of Ziziphus jujuba var. Spinosa in China. Ecological Indicators, 139, 108934.
https://doi.org/10.1016/j.ecolind.2022.108934
Xia, C., Huang, Y., Qi, Y., Yang, X., Xue, T., Hu, R., Deng, H., Bussmann, R.W., Yu, S. (2022). Developing long-
term conservation priority planning for medicinal plants in China by combining conservation status with
diversity hotspot analyses and climate change prediction. BMC Biology, 20(89), 1–20.
https://doi.org/10.1186/s12915-022-01285-4
Yang, X., Chen, F., Lin, X., Liu, Z., Zhang, H., Zhao, J., Li, K., Ye, Q., Li, Y., Lv, S., Yang, P., Wu, W., Li, Z., Lal,
R., Tang, H. (2015). Potential benefits of climate change for crop productivity in China. Agricultural and
Forest Meteorology, 208, 76–86. https://doi.org/10.1016/j.agrformet.2015.04.024
Yeung, A.W.K., Mocan, A., Atanasov, A.G. (2018). Let food be thy medicine and medicine be thy food: A
bibliometric analysis of the most cited papers focusing on nutraceuticals and functional foods. Food Chemistry,
, 455–465. https://doi.org/10.1016/j.foodchem.2018.06.139
Yin, R., Gruss, I., Eisenhauer, N., Kardol, P., Thakur, M.P., Schmidt, A., Xu, Z., Siebert, J., Zhang, C., Wu, G.-L.,
Schadler, M. (2019). Land use modulates the effects of climate change on density but not community
composition of Collembola. Soil Biology and Biochemistry, 138, 107598.
https://doi.org/10.1016/j.soilbio.2019.107598
Zhang, J., Liu, Y. (2022). Decoupling of impact factors reveals the response of cash crops phenology to climate
change and adaptive management practice. Agricultural and Forest Meteorology, 322, 109010.
https://doi.org/10.1016/j.agrformet.2022.109010
Zhang, K., Zhang, Y., Zhou, C., Meng, J., Sun, J., Zhou, T., Tao, J. (2019). Impact of climate factors on future
distributions of Paeonia ostii across China estimated by MaxEnt. Ecological Informatics, 50, 62–67.
https://doi.org/10.1016/j.ecoinf.2019.01.004
Zhang, Z., Li, Y., Chen, X., Wang, Y., Niu, B., Liu, D.L., He, J., Pulatov, B., Hassan, I., Meng, Q. (2023). Impact of
climate change and planting date shifts on growth and yields of double cropping rice in southeastern China in
future. Agricultural Systems, 205, 103581. https://doi.org/10.1016/j.agsy.2022.103581
Zu, K., Wang, Z., Zhu, X., Lenoir, J., Shrestha, N., Lyu, T., Luo, A., Li, Y., Ji, C., Peng, S., Meng, J., Zhou, J. (2021).
Upward shift and elevational range contractions of subtropical mountain plants in response to climate change.
Science of Total Environment, 783, 146896. https://doi.org/10.1016/j.scitotenv.2021.146896