Allelopathic activity of the Baltic picocyanobacterium Synechocystis sp.
DOI:
https://doi.org/10.24917/25438832.2.10Keywords:
allelopathy, picocyanobacteria, Synechocystis sp., growth, mixed culture, monocultureAbstract
Allelopathic compounds produced by picocyanobacteria could affect the growth and development of biological systems. The main aim of this study was to investigate the influence of unknown allelochemicals obtained from picocyanobacterium Synechocystis sp. BA-153 in monocultures and in mixed cultures. In this study, we demonstrated that Synechocystis sp. BA-153 caused allelopathic effects against other strains of picocyanobacteria. It was found that Synechocystis sp. BA-121 was strongly inhibited by Synechocystis sp. BA-153 in both the mixed culture and cell-free filtrates. On the other hand, the addition of live picocyanobacterial culture of Synechocystis sp. BA-153 stimulated the growth of Synechocystis sp. BA-122. These results showed the allelopathic activity of Synechocystis sp. BA-153, which can cause either the inhibition or stimulation of growth of selected picoplanktonic cyanobacteria.
Downloads
Metrics
References
Anderson, D.M., Cembella, A.D., Hallegraeff, G.M. (2012). Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management. Annual Review of Marine Science, 4, 143–176. https://doi.org/10.1146/annurev-marine-120308-081121
Berry, J.P., Gantar, M., Perez, M.H., Berry, G., Noriega, F.G. (2008). Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Marine Drugs, 6, 117–146. https://doi.org/10.3390/md20080007
Burja, A.M., Banaigs, B., Abou-Mansour, E., Burgess, J.G., Wright, P.C. (2001). Marine cyanobacteria - a prolific source of natural products. Tetrahedron, 57, 9347–9377. https://doi.org/10.1016/S0040-4020(01)00931-0
Costa, M.S., Costa, M., Ramos, V., Leão, P.N., Barreiro, A., Vasconcelos, V., Martins, R. (2015). Picocyanobacteria from a clade of marine cyanobium revealed bioactive potential against microalgae, bacteria, and marine invertebrates. Journal of Toxicology and Environmental Health, Part A, 78(7), 432–442. https://doi.org/10.1080/15287394.2014.991466
Fistarol, G.O., Legrand, C., Selander, E., Hummert, C., Stolte, W., Granéli, E. (2004). Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquatic Microbial Ecology, 35, 45–56. https://doi.org/10.3354/ame035045
Gross, E.M. (2003). Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences, 22, 313–339. https://doi.org/10.1080/713610859
Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: W.L. Smith, M.H. Chanley (eds.), Culture of Marine Invertebrate Animals. New York, USA: Plenum Press, 26–60.
Hamilton, T.J., Paz-Yepes, J., Morrison, R., Palenik, A.B., Tresguerres, M. (2014). Exposure to bloom-like concentrations of two marine Synechococcus cyanobacteria (strains CC9311 and CC9902) differentially alters fish behaviour. Conservation Physiology, 2(1), cou020. https://doi.org/10.1093/conphys/cou020
Inderjit, K., Dakshini, M.M. (1994). Algal allelopathy. The Botanical Review, 60(2), 182–196. https://doi.org/10.1007/BF02856576
Issa, A.A. (1999). Antibiotic production by the cyanobacteria Oscillatoria angustissima and Calothrix parietina. Environmental Toxicology and Pharmacology, 8, 33–37. https://doi.org/10.1016/S1382-6689(99)00027-7
Ji, X.Q., Han, X.T., Zheng, L., Yu, Z.M., Yang, B.J., Zou, J.Z. (2011). Allelopathic interactions between Prorocentrum micans and Skeletonema costatum or Karenia mikimotoi in laboratory cultures. Chinese Journal of Oceanology and Limnology, 29(4), 840–848. https://doi.org/10.1007/s00343-011-0512-x
Latała, A., Jodłowska, S., Pniewski, F. (2006). Culture collection of Baltic Algae (CCBA) and characteristic of some strains by factorial experiment approach. Archiv für Hydrobiologie, 165, Algological Studies, 122, 137–154. https://doi.org/10.1127/1864-1318/2006/0122-0137
Leão, P.N., Engene, N., Antunes, A., Gerwick, W.H., Vasconcelos, V. (2012). The chemical ecology of cyanobacteria. Natural Product Reports, 29, 372–391. https://doi.org/10.1039/C2NP00075J
Legrand, C., Rengefors, K., Fistarol, G.O., Granéli, E. (2003). Allelopathy in phytoplankton – biochemical, ecological and evolutionary aspects. Phycologia, 42(4), 406–419. https://doi.org/10.2216/i0031-8884-42-4-406.1
Liu, J., Van Rijssel, M., Yang, W., Peng, X., Lü, S., Wang, Y., Chen, J., Wang, Z., Qi, Y. 2010. Negative effects of Phaeocystis globosa on microalgae. Chinese Journal of Oceanology and Limnology, 28(4), 911–916. https://doi.org/10.1007/s00343-010-9061-y
Marie, D., Simon, N., Vaulot, D. (2005). Phytoplankton cell counting by flow cytometry. Algal Culturing Techniques, 1, 253–267. https://doi.org/10.1016/B978-012088426-1/50018-4
Martins, R.F., Ramos, M.F. Herfindal, L. Sousa, J.A., Skærven, K., Vasconcelos V.M. (2008). Antimicrobial and cytotoxic assessment of marine cyanobacteria – Synechocystis and Synechococcus. Marine Drugs, 6(1), 1–11.
Mazur-Marzec, H., Błaszczyk, A., Felczykowska, A., Hohlfeld, N., Kobos, J., Toruńska-Sitarz, A., Devi, P., Montalvão, S., D’souza, L., Tammela, P., Mikosik, A., Bloch, S., Nejman-Faleńczyk, B., Węgrzyn, G. (2015). Baltic cyanobacteria – a source of biologically active compounds. European Journal of Phycology, 50, 343–360. https://doi.org/10.1080/09670262.2015.1062563
Molisch, H. (1937). Der einfluss einer pflanze auf die andere – Allelopathie. Jena: G. Fisher, Verlag, pp. 106. [In Polish]
Paz-Yepes, J., Brahamsha, B., Palenik, B. (2013). Role of a Microcin-C-like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus. Proceedings of the National Academy of Sciences, 110, 12030–12035. https://doi.org/10.1073/pnas.1306260110
Poniedziałek, B., Rzymski, P., Kokociński, M., Karczewski, J. (2015). Toxic potencies of metabolite(s) of noncylindrospermopsin producing Cylindrospermopsis raciborskii isolated from temperate zone in human white cells. Chemosphere 120, 608-14. https://doi.org/10.1016/j.chemosphere.2014.09.067
Rice, E.L. (1979). Allelopathy - an update. Botanical Review, 45, 15–109. https://doi.org/10.1007/BF02869951
Rzymski, P., Poniedziałek, B., Kokociński, M., Jurczak, T., Lipski, D., Wiktorowicz, K. (2014). Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful. Algae, 35, 1–8. https://doi.org/10.1016/j.hal.2014.03.002
Schagerl, M., Unterrieder, I., Angeler, D.G. (2002). Allelopathy among Cyanoprokaryota and other algae originating from lake Neusiedlersee (Austria). International Review of Hydrobiology, 87, 365–374. https://doi.org/10.1002/1522-2632(200207)87:4<365::AID-IROH365>3.0.CO;2-B
Sorokin, Y.I., Zakuskina, O.Y. (2010). Features of the Comacchio ecosystem transformed during persistent bloom of picocyanobacteria. Journal of Oceanography, 66(3), 373–387. https://doi.org/10.1007/s10872-010-0033-9
Suikkanen, S., Fistarol, G.O., Granéli, E. (2004). Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. Journal of Experimental Marine Biology and Ecology, 308, 85–101. https://doi.org/10.1016/j.jembe.2004.02.012
Suikkanen, S., Fistarol, G.O., Granéli, E. (2005). Effects of cyanobacterial allelochemicals on a natural plankton community. Marine Ecology Progress Series, 287, 1–9. https://doi.org/10.3354/meps287001
Suikkanen, S., Engström-Öst, J., Jokela, J., Sivonen, K., Viitasalo, M. (2006). Allelopathy of Baltic Sea cyanobacteria: no evidence for the role of nodularin. Journal of Plankton Research, 28, 543–550. https://doi.org/10.1093/plankt/fbi139
Śliwińska, S., Jodłowska, S., Latała, A. (2011). Ekofizjologiczne i allelopatyczne właściwości pikoplanktonowej sinicy Synechococcus sp. Acta Geographica Silesiana, 1, 63–66. [In Polish]
Śliwińska-Wilczewska, S., Pniewski, F., Latała, A. (2016a). Allelopathic interactions between Synechococcus sp. and Nodularia spumigena under different light conditions. Allelopathy Journal, 37(2), 241–252.
Śliwińska-Wilczewska, S., Pniewski, F., Latała, A. (2016b). Allelopathic activity of the picocyanobacterium Synechococcus sp. under varied light, temperature and salinity conditions. International Review of Hydrobiology, 101, 1–9. https://doi.org/10.1002/iroh.201501819
Żak, A., Kosakowska, A. (2015). The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris. Estuarine, Coastal and Shelf Science, 167, 113–118. https://doi.org/10.1016/j.ecss.2015.07.038