Allelopathic effect of macroalgae Fucus vesiculosus (Ochrophyta) and Coccotylus brodiei (Rhodophyta) on the growth and photosynthesis performance of Baltic cyanobacteria

Authors

  • Gracjana Budzałek Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Sylwia Śliwińska-Wilczewska Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland https://orcid.org/0000-0002-3147-6605

DOI:

https://doi.org/10.24917/25438832.6.5

Keywords:

allelopathy, aqueous extract, brown algae, cyanobacteria, fluorescence, growth, macroalgae, red algae

Abstract

In aquatic ecosystems, allelopathic activity depends on the production and secretion of allelopathic compounds and their effective dispersal in the environment. In addition, macroalgae have been found to produce active metabolites that affect other organisms that compete with them for nutrients. However, the allelopathic activity of Baltic red and brown macroalgae on filamentous cyanobacteria is still insufficiently understood. Therefore, the main objective of this study was to demonstrate and compare the allelopathic effects of macroalgae Fucus vesiculosus L. and Coccotylus brodiei (Turner) Kütz. on the growth and photosynthetic activity of two Baltic cyanobacteria Aphanizomenon sp. and Nostoc sp. It was found a stimulating effect of different concentrations (5, 25, and 50 µL mL-1) of the aqueous extract obtained from C. brodiei on the number of cells of Nostoc sp. which constituted 108%, 140%, and 147%, respectively, relative to the control treatment.

On the other hand, extracts obtained from F. vesiculosus had no statistically significant effect on the number of cells of the cyanobacteria Aphanizomenon sp. and Nostoc sp. Moreover, the C. brodiei extracts had no significant impact on the growth of Aphanizomenon sp. Furthermore, Baltic macroalgae F. vesiculosus and C. brodiei was able to exert allelopathic effects on photosynthesis performance of Nostoc sp. and Aphanizomenon sp. and compounds produced by them had inhibitory, stimulatory, or no significant effect on the maximum PSII quantum efficiency (Fv/Fm) and the effective quantum yield of PSII photochemistry (ΦPSII). The results obtained in this work constitute an important contribution to the knowledge on the allelopathic activity of Baltic red and brown algae on certain bloom-forming species of filamentous cyanobacteria.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Budzałek, G., Śliwińska-Wilczewska, S., Latała, A. (2018). Allelopathic effect of Ulva intestinalis L. on the Baltic filamentous cyanobacterium Nostoc sp. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae 3, 80–89. http://doi.org./10.24917/25438832.3.6.

Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P., Öquist, G. (1998). Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiology and Molecular Biology Reviews, 62, 667–683.

Dandelot, S., Robles, C., Pech, N., Cazaubon, A., Verlaque, R. (2008). Allelopathic potential of two invasive alien Ludwigia spp. Aquatic Botany, 88, 311–316. https://doi.org/10.1016/j.aquabot.2007.12.004

El Gamal, A.A. (2010). Biological importance of marine algae. Saudi Pharm Journal, 18, 1–25. https://doi.org/10.1016/j.jsps.2009.12.001

Elakovich, S.D., Wooten, J.W. (1989). Allelopathic potential of sixteen aquatic and wetland plants. Toxicology, 17, 129–182.

Gomes, M.P., Garcia, Q.S., Barreto, L.C., Pimenta, L.P.S., Matheus, M.T., Figueredo, C.C. (2017). Allelopathy: an overview from micro-to macroscopic organisms, from cells to environments, and the perspectives in a climate-changing world. Biologia, 72, 113–129. https://doi.org/10.1515/biolog-2017-0019

Granéli, E., Salomon, P.S., Fistarol, G.O. (2008). The role of allelopathy for harmful algal bloom formation. In: Evangelista, V., Barsanti, L., Frassanito, A., Passarelli, V., Gualtieri P. (eds.). Algal toxins: nature, occurrence, effect and detection. NATO Science for Peace and Security Series A: Chemistry and Biology, Springer, Netherlands: pp. 159–178. http://doi.org/10.1007/978-1-4020-8480-5_5

Gross, E.M. (2003). Allelopathy of aquatic autotrophs. Critical reviews in plant sciences, 22, 313–339. https://doi.org/10.1080/713610859

Guillard, R.R., Sieracki, M.S. (2005). Counting cells in cultures with the light microscope. Algal Culturing Techniques, 239–252. http://doi.org/10.1016/B978-012088426-1/50017-2

Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: W.L. Smith, M.H. Chanley (eds.), Culture of marine invertebrate animals. New York, USA: Plenum Press, 26–60. http://doi.org./10.1007/978-1-4615-8714-9_3.

Guiry, M.D., Guiry, G.M. (2021). AlgaeBase World-wide electronic publication. Galway, Ireland: National University of Ireland, Galway. http://www.algaebase.org; searched on 17 June 2021

IAS. (1996). First world congress on allelopathy. A science for the future. http://www-ias.uca.es/ bylaws.htm#CONSTI.

Inderjit, Dakshini, K.M.M. (1994). Algal allelopathy. The Botanical Review, 60, 182–197. https://doi.org/10.1007/BF02856576

Ishii, T., Okino, T., Suzuki, M., Machiguchi, Y. (2004). Tichocarpols A and B, two novel phenylpropanoids with feeding-deterrent activity from the red alga Tichocarpus crinitus. Journal of Natural Products, 67, 1764–1766. https://doi.org/10.1021/np0498509

Kakisawa, H., Asari, F., Kusumi, T., Toma, T., Sakurai, T., Oohusa, T., Hara, Y., Chiharai, M. (1988). An allelopathic fatty acid from the brown alga Cladosiphon okamuranus. Phytochemistry, 27, 731–735. https://doi.org/10.1016/0031-9422(88)84084-6

Kristinsson, G., Jónsdóttir, R. (2015). Novel bioactive seaweed based ingredients and products. Nordic Innovation Publication, Digitala Vetenskapliga Arkivet, Oslo, p. 72.

Latała, A., Jodłowska, S., Pniewski, F. (2006). Culture Collection of Baltic Algae (CCBA) and characteristic of some strains by factorial experiment approach. Algological Studies/Archiv für Hydrobiologie, 122, 137–154. http://doi.org/10.1127/1864-1318/2006/0122-0137.

Legrand, C., Rengefors, K., Fistarol, G.O., Granéli, E. (2003). Allelopathy in phytoplankton – biochemical, ecological and evolutionary aspects. Phycologia, 42, 406–419. https://doi.org/10.2216/i0031-8884-42-4-406.1

Lu, H., Xie, H., Gong, Y., Wang, Q., Yang, Y. (2011). Secondary metabolites from the seaweed Gracilaria lemaneiformis and their allelopathic effects on Skeletonema costatum. Biochemical Systematics and Ecology, 39, 397–400. https://doi.org/10.1016/j.bse.2011.05.015

Machado, M.D., Lopes, A.R., Soares, E.V. (2015). Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress. Journal of Hazardous Materials, 296, 82–92. https://doi.org/10.1016/j.jhazmat.2015.04.022

Molisch, H. (1937). The influence of one plant on the other, allelopathy (Der Einfluss einer Pflanze auf die andere, Allelopathie). Germany: Fischer Jena. [In German]

Nagayama, K., Shibata, T., Fujimoto, K., Honjo, T., Nakamura, T. (2003). Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture, 218, 601–611. https://doi.org/10.1016/S0044-8486(02)00255-7

Rice, E.L. (1984). Allelopathy. 2nd ed. Orlando, Florida: Academic Press, pp. 423.

Schreiber, U., Endo, T., Mi, H., Asada, K. (1995). Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant and Cell Physiology, 36, 873–882. https://doi.org/10.1093/oxfordjournals.pcp.a078833

Song, H., Lavoie, M., Fan, X., Tan, H., Liu, G., Xu, P., Fu, Z., Paerl, H.W., Qian, H. (2017). Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa. The ISME Journal, 11, 1865–1876. https://doi.org/10.1038/ismej.2017.45

Suikkanen, S., Fistarol, G.O., Granéli, E. (2004). Allelopathic effects of the Baltic Cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. Journal of Experimental Marine Biology and Ecology, 308, 85–101.

Suzuki, M., Yamada, H., Kurata, K. (2002). Dictyterpenoids A and B two novel diterpenoids with feeding-deterrent activity from the brown alga Dilophus okamurae. Journal of Natural Products, 65, 121–125. https://doi.org/10.1021/np010234b

Suzuki, Y., Takabayashi, T., Kawaguchi, T., Matsunaga, K. (1998). Isolation of an allelopathic substance from the crustose coralline algae, Lithophyllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe (Phaeophyta). Journal of Experimental Marine Biology and Ecology, 225, 69–77. https://doi.org/10.1016/S0022-0981(97)00208-6

Śliwińska-Wilczewska, S., Maculewicz, J., Barreiro Felpeto, A., Vasconcelos, V., Latała, A. (2017). Allelopathic activity of the picocyanobacterium Synechococcus sp. on filamentous cyanobacteria. Journal of Experimental Marine Biology and Ecology 496, 16–21. http://doi.org/10.1016/j.jembe.2017.07.008.

Śliwińska-Wilczewska, S., Wiśniewska, K., Konarzewska, Z., Cieszyńska, A., Barreiro Felpeto, A., Lewandowska, A.U., Latała, A. (2021). The current state of knowledge on taxonomy, modulating factors, ecological roles, and mode of action of phytoplankton allelochemicals. Science of the Total Environment 773, 145681. https://doi.org/10.1016/j.scitotenv.2021.145681

Wang, R., Xiao, H., Zhang, P., Qu, L., Cai, H., Tang, X. (2007). Allelopathic effects of Ulva pertusa, Corallina pilulifera and Sargassum thunbergii on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense. Journal of Applied Phycology, 19, 109–121. https://doi.org/10.1007/s10811-006-9117-8

Złoch, I., Śliwińska-Wilczewska, S., Kucharska, M., Kozłowska, W. (2018). Allelopathic effects of Chara species (C. aspera, C. baltica, and C. canescens) on the bloom-forming picocyanobacterium Synechococcus sp. Environmental Science and Pollution Research, 25, 36403–36411. https://doi.org/10.1007/s11356-018-3579-5

Downloads

Published

2021-11-19 — Updated on 2021-11-20

How to Cite

Budzałek, G. ., & Śliwińska-Wilczewska, S. . (2021). Allelopathic effect of macroalgae Fucus vesiculosus (Ochrophyta) and Coccotylus brodiei (Rhodophyta) on the growth and photosynthesis performance of Baltic cyanobacteria. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 6, 81–94. https://doi.org/10.24917/25438832.6.5

Issue

Section

Experimental Biology

Most read articles by the same author(s)