Cyanobacteria and cyanometabolites used in the pharmaceutical and medical industry
DOI:
https://doi.org/10.24917/25438832.4.12Keywords:
applications, blue-green algae, cyanobacteria, cyanometabolites, industryAbstract
Związki bioaktywne sinic wykazują różnorodne właściwości, które potencjalnie mogą być wykorzystane w wielu sektorach przemysłu. W artykule tym szczególny nacisk położono na wykorzystanie sinic i ich cyjanometabolitów, zarówno w przemyśle farmaceutycznym, jak i medycznym. Scharakteryzowano związki wyizolowane ze szczepów sinic, które można stosować do wytwarzania leków o działaniu przeciwwirusowym, przeciwgrzybiczym, przeciwnowotworowym, przeciwdrobnoustrojowym oraz przeciwbakteryjnym. Pokazano również pozytywne aspekty hodowli sinic i możliwości ich komercyjnego wykorzystania.
Downloads
Metrics
References
AlgaeBase https://www.algaebase.org/. 1996–2019 M.D. Guiry.
Almeida, J., Freitas, M., Cruz, S., Leão, P., Vasconcelos, V., Cunha, I. (2015). Acetylcholinesterase in biofouling species: characterization and mode of action of cyanobacteria-derived antifouling agents. Toxins, 7, 2739–2756. https://doi.org/10.3390/toxins7082739
Berry, J.P., Gantar, M., Perez, M.H., Berry, G., Noriega, F.G. (2008). Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Marine Drugs, 15, 117–146. https://doi.org/10.3390/md20080007
Blom, J.F., Brütsch, T., Barbaras, D., Bethuel, Y., Locher, H.H., Hubschwerlen, C., Gademann, K. (2006). Potent algicides based on the cyanobacterial alkaloid nostocarboline. Organic Letters, 8(4), 737–740. https://doi.org/10.1021/ol052968b
Bokesch, H.R., O'Keefe, B.R., McKee, T.C., Pannell, L.K., Patterson, G.M., Gardella, R.S., Boyd, M.R. (2003). A potent novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Biochemistry, 42(9), 2578–2584. https://doi.org/10.1021/bi0205698
Burja, A.M., Banaigs, B., Abou-Mansour, E., Burgess, J.G., Wright, P.C. (2001). Marine cyanobacteria – a prolific source of natural products. Tetrahedron, 57(46), 9347–9377. https://doi.org/10.1016/S0040-4020(01)00931-0
Costa, M., Costa-Rodrigues, J., Fernandes, M.H., Barros, P., Vasconcelos, V., Martins, R. (2012). Marine cyanobacteria compounds with anticancer properties: A review on the implication of apoptosis. Marine Drugs, 10(10), 2181–2207. https://doi.org/10.3390/md10102181
Costa, M., Garcia, M., Costa-Rodrigues, J., Costa, M.S., Ribeiro, M.J., Fernandes, M.H., Martins, R. (2014). Exploring bioactive properties of marine cyanobacteria isolated from the Portuguese Coast: High potential as a source of anticancer compounds. Marine Drugs, 12, 98–114. https://doi.org/10.3390/md12010098
El-Baky, H.H.A. (2003). Over production of phycocyanin pigment in blue green alga Spirulina sp. and it’s inhibitory effect on growth of Ehrlich ascites carcinoma cells. Journal of Medical Science, 3(4), 314–324. https://doi.org/10.3923/jms.2003.314.324
Falch, B.S., König, G.M., Wright, A.D., Sticher, O., Angerhofer, C.K., Pezzuto, J.M., Bachmann, H. (1995). Biological activities of cyanobacteria: evaluation of extracts and pure compounds. Planta Medica, 61(04), 321–328. https://doi.org/10.1055/s-2006-958092
Garima, A.C., Goyal, P., Kaushik, P. (2013). Antibacterial and anticandidal screening of extracellular and intracellular extracts of Phormedium, a Cyanobacterium. International Journal of Chemical and Life Sciences, 2, 1107–1111.
Głowacka, J., Waleron, M., Szefel-Markowska, M., Łojkowska, E., Waleron, K. (2007). Cyanobacteria – source of biologically active compounds. Biotechnologia, 4(79), 95–112. [In Polish]
Gupta, V., Ratha, S.K., Sood, A., Chaudhary, V., Prasanna, R. (2013). New insights into the biodiversity and applications of cyanobacteria (blue-green algae) – prospects and challenges. Algal Research, 2(2), 79–97. https://doi.org/10.1016/j.algal.2013.01.006
Gustafson, K.R., Cardellina, J.H., Fuller, R.W., Weislow, O.S., Kiser, R.F., Snader, K.M., Patterson, G.M.L., Boyd, M.R. (1989). AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). JNCI: Journal of the National Cancer Institute, 81(16), 1254–1258.
Gutiérrez, M., Suyama, T.L., Engene, N., Wingerd, J.S., Matainaho, T., Gerwick, W.H. (2008). Apratoxin D, a potent cytotoxic cyclodepsipeptide from Papua New Guinea collections of the marine cyanobacteria Lyngbya majuscula and Lyngbya sordida. Journal of Natural Products, 71(6), 1099–1103. https://doi.org/10.1021/np800121a
Hagmann, L., Jüttner, F. (1996). Fischerellin A, a novel photosystem-II-inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity. Tetrahedron Letters, 37(36), 6539–6542. https://doi.org/10.1016/0040-4039(96)01445-1
Harada, K.I., Suomalainen, M., Uchida, H., Masui, H., Ohmura, K., Kiviranta, J., Niku-Paavola, M.L., Ikemoto, T. (2000). Insecticidal compounds against mosquito larvae from Oscillatoria agardhii strain 27. Environmental Toxicology: An International Journal, 15(2), 114–119. https://doi.org/10.1002(SICI)1522-7278(2000)15:23.0.CO;2-P
Imhoff, J.F., Labes A., Wiese, J. (2011). Bio-mining the microbial treasures of the ocean: new natural products. Biotechnology Advances, 29, 468–482. https://doi.org/10.1016/j.biotechadv.2011.03.001
Ishida, K., Nakagawa, H., Murakami, M. (2000). Microcyclamide, a cytotoxic cyclic hexapeptide from the cyanobacterium Microcystis aeruginosa. Journal of Natural Products, 63(9), 1315–1317. https://doi.org/10.1021/np000159p
Ishimi, Y., Sugiyama, F., Ezaki, J., Fujioka, M., Wu, J. (2006). Effects of Spirulina, a blue-green alga, on bone metabolism in ovariectomized rats and hindlimb-unloaded mice. Bioscience, Biotechnology, and Biochemistry, 70(2), 363–368. https://doi.org/10.1271/bbb.70.363
Kalemkerian, G.P., Ou, X., Adil, M.R., Rosati, R., Khoulani, M.M., Madan, S.K., Pettit, G.R. (1999). Activity of dolastatin 10 against small-cell lung cancer in vitro and in vivo: induction of apoptosis and bcl-2 modification. Cancer Chemotherapy and Pharmacology, 43(6), 507–515. https://doi.org/10.1007/s002800050931
Kim, J.D. (2006). Screening of cyanobacteria (blue-green algae) from rice paddy soil for antifungal activity against plant pathogenic fungi. Mycobiology, 34(3), 138–142. https://doi.org/10.4489/MYCO.2006.34.3.138
Klasik, S., Zych, M., Kaczmarczyk-Sedlak, I. (2010). Cyanobacteria (Cyanophyta)–classification, structure of the cell and significance; Spirulina platensis and her therapeutic significance for the human’s body. Medycyna Rodzinna, 4, 120–123.
Kreitlow, S., Mundt, S., Lindequist, U. (1999). Cyanobacteria – a potential source of new biologically active substances. Journal of Biotechnology, 70(1–3), 61–63. https://doi.org/10.1016/S0168-1656(99)00058-9
Lam, K.S. (2007). New aspects of natural products in drug discovery. Trends in Microbiology, 15(6), 279–289. https://doi.org/10.1016/j.tim.2007.04.001
Larsen, L.K., Moore, R.E., Patterson, G.M. (1994). β-Carbolines from the blue-green alga Dichothrix baueriana. Journal of Natural Products, 57(3), 419–421. https://doi.org/10.1021/np50105a018
Lau, A.F., Siedlecki, J., Anleitner, J., Patterson, G.M., Caplan, F.R., Moore, R.E. (1993). Inhibition of reverse transcriptase activity by extracts of cultured blue-green algae (Cyanophyta). Planta Medica, 59(2), 148–151. https://doi.org/10.1055/s-2006-959631
Leão P.N., Engene, N., Antunes, A., Gerwick, W.H., Vasconcelos, V. (2012). The chemical ecology of cyanobacteria. Natural Product Reports, 29, 372–391. https://doi.org/10.1039/c2np00075j
Linington, R.G., Edwards, D.J., Shuman, C.F., McPhail, K.L., Matainaho, T., Gerwick, W.H. (2008). Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine cyanobacterium Symploca sp. Journal of Natural Products, 71(1), 22–27. https://doi.org/10.1021/np070280x
Liu, Y., Law, B.K., Luesch, H. (2009). Apratoxin a reversibly inhibits the secretory pathway by preventing cotranslational translocation. Molecular Pharmacology, 76(1), 91–104. https://doi.org/10.1124/mol.109.056085
Łukomska, J., Kasprzykowski, F., Łankiewicz, L., Grzonka, Z. (2002). Peptide toxins from cyanobacteria. Wiadomości Chemiczne, 56(1–2), 57–82. [In Polish]
Mazur-Marzec, H., Błaszczyk, A., Felczykowska, A., Hohlfeld, N., Kobos, J., Toruńska-Sitarz, A., Devi, P., Montalvão, S., D’souza, L., Tammela, P., Mikosik, A., Bloch, S., Nejman-Faleńczyk, B., Węgrzyn, G. (2015). Baltic cyanobacteria–a source of biologically active compounds. European Journal of Phycology, 50, 343–360. https://doi.org/10.1080/09670262.2015.1062563
Nuhu, A.A. (2013). Spirulina (Arthrospira): An important source of nutritional and medicinal compounds. Journal of Marine Biology, ID 325636. https://doi.org/10.1155/2013/325636
Oufdou, K., Mezrioui, N., Oudra, B., Loudiki, M., Barakate, M., Sbiyyaa, B. (2001). Bioactive compounds from Pseudanabaena species (Cyanobacteria). Microbios, 106, 21–29.
Patterson, G.M.L., Bolis, C.M. (1995). Regulation of scytophycin accumulation in cultures of Scytonema ocellatum. II. Nutrient requirements. Applied Microbiology and Biotechnology, 43(4), 692–700. https://doi.org/10.1007/BF00164775
Rao, D.R., Thangavel, C., Kabilan, L., Suguna, S., Mani, T.R., Shanmugasundaram, S. (1999). Larvicidal properties of the cyanobacterium Westiellopsis sp. (blue-green algae) against mosquito vectors. Transactions of the Royal Society of Tropical Medicine and Hygiene, 93(3), 232–232. https://doi.org/10.1016/S0035-9203(99)90002-0
Rickards, R.W., Rothschild, J.M., Willis, A.C., de Chazal, N.M., Kirk, J., Kirk, K., Smith, G.D. (1999). Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron, 55(47), 13513–13520. https://doi.org/10.1016/S0040-4020(99)00833-9
Rubio, B.K., Parrish, S.M., Yoshida, W., Schupp, P.J., Schils, T., Williams, P.G. (2010). Depsipeptides from a Guamanian marine cyanobacterium, Lyngbya bouillonii, with selective inhibition of serine proteases. Tetrahedron Letters, 51(51), 6718–6721.
Sheih, I.C., Fang, T.J., Wu, T.K., Lin, P.H. (2009). Anticancer and antioxidant activities of the peptide fraction from algae protein waste. Journal of Agricultural and Food Chemistry, 58(2), 1202–1207. https://doi.org/10.1021/jf903089m
Shih, C., Teicher, B.A. (2001). Cryptophycins: a novel class of potent antimitotic antitumor depsipeptides. Current Pharmaceutical Design, 7(13), 1259–1276. https://doi.org/10.2174/1381612013397474
Simmons, T.L., Andrianasolo, E., McPhail, K., Flatt, P., Gerwick, W.H. (2005). Marine natural products as anticancer drugs. Molecular Cancer Therapeutics, 4(2), 333–342.
Simmons, T.L., Engene, N., Ureña, L.D., Romero, L.I., Ortega-Barría, E., Gerwick, L., Gerwick, W.H. (2008). Viridamides A and B, lipodepsipeptides with antiprotozoal activity from the marine cyanobacterium Oscillatoria nigro-viridis. Journal of Natural Products, 71(9), 1544–1550. https://doi.org/10.1021/np800110e
Singh, R.K., Tiwari, S.P., Rai, A.K., Mohapatra, T.M. (2011). Cyanobacteria: an emerging source for drug discovery. The Journal of Antibiotics, 64(6), 401. https://doi.org/10.1038/ja.2011.21
Srivastava, A., Jüttner, F., Strasser, R.J. (1998). Action of the allelochemical, fischerellin A, on photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1364(3), 326–336. https://doi.org/10.1016/S0005-2728(98)00014-0
Vijayakumar, S., Menakha, M. (2015). Pharmaceutical applications of cyanobacteria – A review. Journal of Acute Medicine, 5(1), 15–23. https://doi.org/10.1016/j.jacme.2015.02.004
Wall, N.R., Mohammad, R.M., Al-Katib, A.M. (1999). Bax: Bcl-2 ratio modulation by bryostatin 1 and novel antitubulin agents is important for susceptibility to drug induced apoptosis in the human early pre-B acute lymphoblastic leukemia cell line, Reh. Leukemia Research, 23(10), 881–888. https://doi.org/10.1016/s0145-2126(99)00108-3
Wright, A.D., Papendorf, O., König, G.M. (2005). Ambigol C and 2, 4-Dichlorobenzoic Acid, Natural Products Produced by the Terrestrial Cyanobacterium Fischerella ambigua. Journal of Natural Products, 68(3), 459–461. https://doi.org/10.1021/np049640w
Yasuhara-Bell, J., Lu, Y. (2010). Marine compounds and their antiviral activities. Antiviral Research, 86(3), 231–240. https://doi.org/10.1016/j.antiviral.2010.03.009
Zainuddin, E., Mundt, S., Wegner, U., Mentel, R. (2002). Cyanobacteria a potential source of antiviral substances against influenza virus. Medical Microbiology and Immunology, 191(3–4), 181–182. https://doi.org/10.1007/s00430-002-0142-1